Архимеда плавание тел. Проектная работа "Закон Архимеда

Пермякова Юлия

Тема моего проекта «Плавание тел».

Цель работы: изучение закона Архимеда, выяснение условий и особенностей плавания тел, проверка их на опытах.

Скачать:

Предварительный просмотр:

МОУ «ООШ с. Дороговиновка Пугачевского района Саратовской облкасти»

ПРОЕКТ

по физике

на тему «Плавание тел»

Учащегося 7 класса

МОУ ООШ с. Дороговиновка

Пермяковой Юлии Учитель: Коннова И.В.

С. Дороговиновка

2014 год

I. Введение

Тема моего проекта «Плавание тел».

Цель работы : изучение закона Архимеда, выяснение условий и особенностей плавания тел, проверка их на опытах.

Задачи:

  1. Подобрать и изучить литературу по теме.
  2. Рассказать об истории открытия закона Архимеда.
  3. Доказать существование архимедовой силы.
  4. Проверить условия плавания тел на опытах.

II. ОСНОВНАЯ ЧАСТЬ

1. Теоретическая часть

1.1. Об Архимеде

Архимед родился в греческом городе Сиракузы в 287 году до н. э., где и прожил почти всю свою жизнь, и там же занимался научной деятельностью. Учился сначала у своего отца, астронома и математика Фидия, потом в Александрии, где правители Египта собрали лучших греческих ученых и мыслителей, а также основали знаменитую, самую большую в мире библиотеку. Здесь, в Александрии, Архимед познакомился с учениками Эвклида, с которыми всю жизнь поддерживал оживленную переписку. Здесь же он усиленно изучал труды Демокрита, Евдокса и других ученых.

После учебы в Александрии Архимед вновь вернулся в Сиракузы и унаследовал должность своего отца, придворного астронома.

В теоретическом отношении труд этого великого ученого был ослепляюще многогранным. Основные работы Архимеда касались различных практических приложений математики (геометрии), физики, гидростатики и механики. Он был также изобретательным инженером, который использовал свой талант для решения ряда практических проблем.

До нас дошло тринадцать трактатов Архимеда. В самом знаменитом из них - "О шаре и цилиндре" (в двух книгах) Архимед устанавливает, что площадь поверхности шара в 4 раза больше площади наибольшего его сечения. Работы Архимеда состоят из расчетов площадей фигур, ограниченных кривыми, и объемов тел, ограниченных произвольными плоскостями - поэтому Архимед может по справедливости считаться отцом интегрального исчисления, возникшего на два тысячелетия позже.

Говорят, будто важнейшим своим открытием Архимед считал доказательство, что объем шара и описанного вокруг него цилиндра относятся между собой как 2:3. Архимед просил своих друзей поместить это доказательство на его могильной плите.

Архимед пытался также решить проблему квадратуры круга и достиг в этом выдающихся результатов, объединив их в труд «Об измерении круга»:

1. Площадь круга равна площади прямоугольного треугольника с катетами, равными длине и радиусу окружности (πr 2 ).

2. Площадь круга так относится к площади описанного вокруг него квадрата, как 11:14.

3. Отношение длины окружности к диаметру больше и меньше .

Архимед впервые вычислил число «пи» - отношение длины окружности к диаметру - и доказал, что оно одинаково для любого круга.

Архимед нашел также сумму бесконечной геометрической прогрессии со знаменателем . В математике это был первый пример бесконечного ряда.

При исследовании одной задачи, сводящейся к кубическому уравнению, Архимед выяснил роль характеристики, которая позже получила название дискриминанта.

Архимеду принадлежит формула для определения площади треугольника через три его стороны (неправильно именуемая формулой Герона).

Большую роль в развитии математики сыграло его сочинение «Псаммит» - «О числе песчинок», в котором он показывает, как с помощью существовавшей системы счисления можно выражать сколь угодно большие числа. В качестве повода для своих рассуждений он использует задачу о подсчете количества песчинок внутри видимой Вселенной. Тем самым было опровергнуто существовавшее тогда мнение о наличии таинственных «самых больших чисел ». Мы до сих пор пользуемся придуманной Архимедом системой наименования целых чисел.

Перечисленные научные находки - это только небольшая часть творчества Архимеда. Его усердно переводили и комментировали арабы, а потом западноевропейские ученые.

В физике Архимед ввел понятие центра тяжести, установил научные принципы статики и гидростатики, дал образцы применения математических методов в физических исследованиях. Основные положения статики сформулированы в сочинении "О равновесии плоских фигур". Архимед рассматривает сложение параллельных сил, определяет понятие центра тяжести для различных фигур, дает вывод закона рычага. Знаменитый закон гидростатики, вошедший в науку с его именем (закон Архимеда), сформулирован в трактате "О плавающих телах".

Ему приписывают известное выражение: „дайте мне точку опоры, и я сдвину землю". По-видимому, оно было высказано в связи со спуском корабля «Сиракосия» на воду. Рабочие были не в силах сдвинуть с места этот корабль. Им помог Архимед, создавший систему блоков (полиспаст), при помощи которой один человек, сам царь, совершил эту работу.

1.2. Закон Архимеда

По преданию, царь Гиерон поручил Архимеду проверить, из чистого ли золота сделана его корона или же ювелир присвоил часть золота, сплавив его с серебром. Размышляя над этой задачей, Архимед как-то зашел в баню и там, погрузившись в ванну, заметил, что количество воды, переливающейся через край, равно количеству воды, вытесненной его телом. Это наблюдение подсказало Архимеду решение задачи о короне, и он, не медля ни секунды, выскочил из ванны и, как был нагой, бросился домой, крича во весь голос о своем открытии: «Эврика! Эврика!» (греч. «Нашел! Нашел!»)».

Тот факт, что на погруженное в воду тело действует некая сила, всем хорошо известен: тяжелые тела как бы становятся более легкими – например, наше собственное тело при погружении в ванну. Купаясь в речке или в море, можно легко поднимать и передвигать по дну очень тяжелые камни – такие, которые не удается поднять на суше; то же явление наблюдается, когда по каким-либо причинам выброшенным на берегу оказывается кит – вне водной среды животное не может передвигаться – его вес превосходит возможности его мышечной системы. В то же время легкие тела сопротивляются погружению в воду: чтобы утопить мяч размером с небольшой арбуз требуется и сила, и ловкость; погрузить мяч диаметром полметра скорее всего не удастся. Интуитивно ясно, что ответ на вопрос – почему тело плавает (а другое – тонет), тесно связан с действием жидкости на погруженное в нее тело; нельзя удовлетвориться ответом, что легкие тела плавают, а тяжелые – тонут: стальная пластинка, конечно, утонет в воде, но если из нее сделать коробочку, то она может плавать; при этом ее вес не изменится.

Чтобы понять природу силы, действующей со стороны жидкости на погруженное тело, достаточно рассмотреть простой пример (рис. 1).

Кубик погружен в воду, причем и вода, и кубик неподвижны. Известно, что давление в тяжелой жидкости увеличивается пропорционально глубине – очевидно, что более высокий столбик жидкости более сильно давит на основание. Это давление действует не только вниз, но и в стороны, и вверх с той же интенсивностью – это закон Паскаля.

Если рассмотреть силы, действующие на кубик (рис. 1), то в силу очевидной симметрии силы, действующие на противоположные боковые грани, равны и противоположно направлены – они стараются сжать кубик, но не могут влиять на его равновесие или движение. Остаются силы, действующие на верхнюю и нижнюю грани. Так как давление на глубине больше, чем у поверхности жидкости и , а , то > . Так как силы F 2 и F 1 направлены в противоположные стороны, то их равнодействующая равна разности F 2 – F 1 и направлена в сторону большей силы, то есть вверх. Эта равнодействующая и является архимедовой силой, то есть силой, выталкивающей тело из жидкости.

Закон Архимеда

Закон Архимеда формулируется таким образом: тело, находящееся в жидкости (или газе), теряет в своем весе столько, сколько весит жидкость (или газ) в объеме, вытесненном телом.

1.3. От чего зависит выталкивающая сила

Поведение тела, находящегося в жидкости, зависит от соотношения между модулями силы тяжести F т и архимедовой силы F A , которые действуют на это тело. Возможны следующие три случая:

  1. F т > F A – тело тонет;
  2. F т = F A – тело плавает в жидкости;
  3. F т A – тело всплывает до тех пор, пока не начнет плавать на поверхности жидкости.

Также поведение тела, находящегося в жидкости, зависит от соотношения плотностей тела и жидкости. Следовательно, для определения поведения тела в жидкости, можно сравнить плотности тела и жидкости. В данном случае возможны также три ситуации:

  1. ρ тела > ρ жидкости – тело тонет
  2. ρ тела = ρ жидкости – тело плавает
  3. ρ тела жидкости – тело всплывает.

Приведем примеры.

Плотность железа – 7800 кг/м 3 , плотность воды – 1000 кг/м 3 . Значит, кусок железа будет тонуть в воде. Плотность льда – 900 кг/м 3 , плотность воды – 1000 кг/м 3 , поэтому лед в воде не тонет, а если его бросить в воду, то он начнет всплывать, и будет плавать на поверхности.

2. Практическая часть

2.1. Доказательство существования архимедовой силы

Проведем эксперимент: возьмем цилиндр, подвешенный к динамометру, измерим вес этого цилиндра. Погрузим его в сосуд с водой. Снова взвесим. Мы заметили, что вес цилиндра стал меньше.

Повторим эксперимент с другим телом – связкой ключей. Вес связки, погруженной в воду, опять стал меньше.

Вывод: на всякое тело, погруженное в жидкость, действует выталкивающая сила, называемая архимедовой силой.

2.2. Расчет архимедовой силы

Рассчитаем выталкивающую силу.

Для этого измерим вес тела в воздухе, затем измерим вес этого же тела, но полностью погруженного в воду. Разность этих сил и будет значением архимедовой силы.

F А = P в возд. – P в воде.

Иначе, архимедову силу можно вычислить, зная плотность жидкости и объем тела, погруженного в эту жидкость, по формуле:

F А = g ρ ж V т

2.3. Сравнение силы тяжести и архимедовой силы

Проведем эксперимент.

Возьмем тело – пузырек с некоторым количеством песка. Определим силу тяжести и архимедову силу, действующую на это тело. Сравним их. Мы видим, что, если:

F т > F A – тело тонет;

F т = F A – тело плавает в жидкости;

F т A – тело всплывает

Вывод: поведение тела, находящегося в жидкости, зависит от соотношения между модулями силы тяжести F т и архимедовой силы F A , которые действуют на это тело.

2.4 Сравнение плотностей жидкости и тела

Проведем еще один эксперимент. Возьмем тела, плотности которых меньше или больше плотности воды. Погрузим их в воду. Мы увидим, что «тела, которые тяжелее жидкости, будучи опущены в неё, погружаются всё глубже, пока не достигают дна, и, пребывая в жидкости, теряют в своём весе столько, сколько весит жидкость, взятая в объёме тел», – как говорил Архимед.

Вывод: поведение тела, находящегося в жидкости, зависит от соотношения плотностей тела и жидкости.

2.5 Сравнение архимедовой силы, действующей на тело в разных по плотности жидкостях

Проведем эксперимент: возьмем две жидкости, различных по плотности: шампунь и пресную воду, и кусок пластилина. Определим выталкивающую силу, действующую на пластилин со стороны каждой из жидкостей. Мы увидим, что архимедова сила оказалась разной: у жидкости с большей плотностью (шампуня) она больше, чем у жидкости с меньшей плотностью (пресной воды).

Мы знаем, что на любое тело, находящееся в жидкости, действуют две силы, направленные в противоположные стороны: сила тяжести и архимедова сила. Сила тяжести равна весу тела и направлена вниз, архимедова же сила зависит от плотности жидкости и направлена вверх. Как физика объясняет плавание тел , и каковы условия плавания тел на поверхности и в толще воды?

Условие плавания тел

Согласно закону Архимеда условие плавания тел следующее: если сила тяжести равна архимедовой силе, то тело может находиться в равновесии в любом месте жидкости, то есть плавать в ее толще. Если сила тяжести меньше архимедовой силы, то тело будет подниматься из жидкости, то есть всплывать. В случае же, когда вес тела больше выталкивающей его архимедовой силы, то тело будет опускаться на дно, то есть тонуть. Выталкивающая сила зависит от плотности жидкости. А вот будет тело плавать или тонуть зависит от плотности тела , так как его плотность увеличит его вес. Если плотность тела будет выше плотности воды, то тело утонет. Как же быть в таком случае?

Плотность сухого дерева за счет полостей, наполненных воздухом, меньше плотности воды и дерево может плавать на поверхности. А вот железо и многие другие вещества значительно плотнее воды. Как же возможно строить корабли из металла и перевозить различные грузы по воде в таком случае? А для этого человек придумал небольшую хитрость. Корпус корабля, который погружается в воду, делают объемным, а внутри этот корабль имеет большие полости, заполненные воздухом, которые сильно уменьшают общую плотность корабля. Объем вытесняемой кораблем воды, таким образом, сильно увеличивают, увеличивая выталкивающую его силу, а плотность корабля в сумме делают меньше плотности воды, дабы корабль мог плавать на поверхности. Поэтому каждый корабль имеет определенный предел массы грузов, который он может увезти. Это называется водоизмещением судна.

Различают порожнее водоизмещение - это масса самого судна, и полное водоизмещение - это порожнее водоизмещение плюс общая масса экипажа, всей оснастки, запасов, топлива и грузов, которую может нормально увезти данное судно без риска утонуть при относительно спокойной погоде.

Плотность тела у организмов, населяющих водную среду, близка к плотности воды. Благодаря этому они могут находиться в толще воды и плавать благодаря подаренным им природой приспособлениям - ластам, плавникам и пр. В передвижении рыб большую роль играет специальный орган - плавательный пузырь. Рыба может менять объем этого пузыря и количество воздуха в нем, благодаря чему ее суммарная плотность может меняться, и рыба может плавать на различной глубине, не испытывая неудобств.

Плотность человеческого тела немного больше плотности воды. Однако, человек, когда у него в легких содержится некоторое количество воздуха, тоже может спокойно держаться на поверхности воды. Если же ради эксперимента, находясь в воде, вы выдохните весь воздух из легких, вы медленно начнете опускаться на дно. Поэтому всегда помните, что плавать не страшно, опасно наглотаться воды и впустить ее в легкие, что и является наиболее частой причиной трагедий на воде.

Разрывающей силе давления жидкости противодействует сила сопротивления материала стенки М :

М=2σ р δ L,

где σр – напряжение материала на разрыв, δ – толщина стенки, L – длина трубы, 2 – сила сопротивления действует с двух сторон.

При условии, что система находится в равновесии, приравняем силы давления жидкости, и сопротивления материала стенки P x =М получим:

P Ld=2σ р δ L

P δ=2σр δ, отсюда

P=2σ р δ/ d.

Рис. 3.15. Давление жидкости на внутренние стенки трубы

3.8. Закон Архимеда и условия плавания тел

Тело, полностью или частично погруженное в жидкость, испытывает со стороны жидкости суммарное давление, направленное снизу вверх и равное весу жидкости в объеме погруженной части тела:

P = ρgWт .

Иначе говоря, на тело, погруженное в жидкость, действует выталкивающая сила, равная весу жидкости в объеме этого тела. Такая сила называется Архимедовой силой, а ее определение – законом Архимеда.

Рис. 3.17. Центр тяжести С и центр водоизмещения d судна

Для однородного тела плавающего на поверхности справедливо соотношение:

Wж /Wт = ρm / ρ,

где W т – объем плавающего тела; ρm – плотность тела. Отношение плотности плавающего тела и жидкости обратно пропорционально отношению объема тела и объема вытесненной им жидкости.

В теории плавания тел используются два понятия: плавучесть и остойчивость.

Плавучесть – это способность тела плавать в полупогруженном состоянии.

Остойчивость – способность плавающего тела восстанавливать нарушенное равновесие после устранения внешних сил (например, ветра или крутого поворота), вызывающих крен.

Вес жидкости, судна взятой в объеме погруженной части судна называют водоизмещением , а точку приложения равнодействующей давления (т.е. центр давления) –

центром водоизмещения.

На законе Архимеда основана теория плавания тел. Центр водоизмещения не всегда совпадает с центром тяжести тела С. Если он выше центра тяжести, то судно не опрокидывается. При нормальном положении судна центр тяжести С и центр водоизмещения d лежат на одной вертикальной прямой O"-O" , представляющей ось симметрии судна и называемой осью плавания (рис. 3.17).

Пусть под влиянием внешних сил судно наклонилось на некоторый угол α, часть судна KLM вышла из жидкости, а часть K"L"M" , наоборот, погрузилось в нее. При этом получаем новое положение центра водоизмещения – d" . Приложим к точке d" подъемную силу P и линию ее действия продолжим до пересечения с осью симметрии O"-O" . Полученная точка m называется метацентром , а отрезок mC = h

называется метацентрической высотой . Будем считать h

положительным, если точка m лежит выше точки C , и отрицательным – в противном случае.

Теперь рассмотрим условия равновесия судна: если h > 0, то судно возвращается в первоначальное положение; если h =0, то это случай

Муниципальное бюджетное общеобразовательное учреждение города Ульяновска "Средняя школа №75"

Творческая работа

"Закон Архимеда.

Плавание тел"

Выполнила: ученица 7 Б класса

Симендеева Диана

Руководитель: учитель физики

Захарова Галина Михайловна

г. Ульяновск

2017г.

Содержание

    1Введение: стр.2

1.1 Цели и гипотезы. стр. 3

2. Основное содержание. стр.4

2.1. Биография Архимеда. стр.4,5

2.2 Закон Архимеда стр.5

2.3.Условие плавания тел. стр.5

2.4 стр.5

3. Порядок выполнения работы. стр.6

3.1.Часть I

3.2.Часть II

4. Выводы

5. Приложения

6. Литература

1.1 Цели и гипотезы.

Цели:

    Изучить биографию Архимеда

    Выяснить условия плавания тел

    Исследовать как зависит F A от плотности и объема жидкости

Гипотезы:

    Зависит ли F A от ρ ж и v т

    Зависят условия плавания от ρ ж и mg

2.Основная часть

2.1.Биография Архимеда.

Архимед(рис.1) родился в 287 году до нашей эры в городе Сиракузы, расположенном на острове Сицилия. Отец Архимеда, Фидий, был математиком и астрономом.. Для получения образования Архимед отправился в духовный и научный центр той эпохи – Александрию Египетскую.

В Александрии Архимед получает основы научных знаний и знакомится с выдающимися учеными своего времени, с астрономом Кононом Самосским, и Эратосфеном Киренским. Архимед состоял с ними в дружеской переписке до конца жизни. Надо полагать, именно в Александрии, прилежно посещая ее знаменитую библиотеку, Архимед познакомился с трудами знаменитых философов и геометров прошлого – Евдокса, Демокрита и многих других.
Закончив обучение в Александрии Египетской, Архимед вернулся в Сиракузы. Уже при его жизни об Архимеде складывали легенды.

Одним из самых известных сюжетов легенд об Архимеде можно назвать «Корона царя Гиерона». Согласно этой легенде, Архимеду поручено было определить, сделана ли эта корона из чистого золота, либо же во время ее изготовления к золоту было добавлено серебро. Решение этой задачи пришло к Архимеду в то время, когда он принимал ванну: погружая корону в воду, можно по вытесненному объему жидкости узнать ее удельный вес; у золотой короны и короны «с примесью» он будет разным. С криком «Эврика!» Архимед выскочил из ванны и нагим пробежал по улицам Сиракуз. Решение задачи с короной положило начало науке гидростатике, родоначальником которой стал Архимед, изложивший ее основы в своем труде «О плавании тел». Сила, выталкивающая любое тело из воды, и в наши дни называется архимедовой силой.

Еще одна легенда повествует о том, что Архимеду удалось сдвинуть с места одним движением руки тяжелый многопалубный корабль «Сиракузия» благодаря разработанной им системе блоков, так называемому полиспасту.

«Дайте мне точку опоры, и я переверну мир», - по легенде, произнес Архимед в связи с этим событием. Использование рычага для увеличения

силы применяется сейчас во всех механических системах. К изобретениям Архимеда относится архимедов винт, или шнек, предназначенный для вычерпывания воды; он и сегодня применяется в Египте .

Главной наукой, которой посвятил себя Архимед была математика. Работы Архимеда показывают, что он был превосходно знаком с математикой и астрономией своего времени. Ряд работ Архимеда в области математики имеет вид посланий к его друзьям и коллегам. Ему принадлежат исследования по всем областям математики его времени: арифметике, алгебре, геометрии.
Основной проблематикой математических работ Архимеда являются задачи на нахождение площадей поверхностей и объемов, которые сейчас могут быть отнесены к области математического анализа. В результате исследований Архимед нашел общую формулу для вычисления площадей и объемов, основанную на методе исчерпывания своего предшественника, математика Евдокса Книдского. До Архимеда ни один ученый не мог найти алгоритм для вычисления площади поверхности и объема шара. Это исследование, изложенное в труде «О шаре и цилиндре» сам Архимед считал вершиной своих научных изысканий. По легенде, он просил высечь изображение шара и цилиндра на своем надгробном камне.
К заслугам Архимеда в области астрономии относится строительство «планетария» для наблюдения за движением пяти планет Солнечной системы, восходом Солнца и Луны. Архимед пытался вычислить расстояния до планет; его ошибкой было распространенное в то время геоцентрическое мировоззрение. В честь Архимеда, памятуя о его астрономических исследованиях, названы кратер и горная цепь на Луне, а также один из астероидов. В родном городе Архимеда, Сиракузах, его имя носит одна из площадей.

2.2 Закон Архимеда

Закон Архимеда формулируется следующим образом:

на тело, погружённое в жидкость (или газ), действует выталкивающая сила, равная весу жидкости (или газа) в объёме погруженной части тела .

F A= рg V

{\displaystyle {F}_{A}=\rho {g}V,} где р {\displaystyle \rho } - плотность жидкости (газа), {\displaystyle {g}} g - ускорение свободного падения, а {\displaystyle V} V - объём погружённой части тела (или часть объёма тела, находящаяся ниже поверхности). Если тело плавает на поверхности (равномерно движется вверх или вниз), то выталкивающая равна по модулю (и противоположна по направлению) силе тяжести, действовавшей на вытесненный телом объём жидкости (газа), и приложена к центру тяжести этого объёма.

2.3.Условие плавания тел.

На твердое тело, погруженное в жидкость, действуют архимедова сила F A и сила тяжести mg. В зависимости от соотношения сил mg и F A тело может тонуть, плавать и всплывать. Если mg > F A , тело тонет; если mg = F A , то тело плавает внутри жидкости или на ее поверхности; если mg < F A , то тело всплывает до тех пор, пока архимедова сила и сила тяжести не сравняются по модулю.Тело плавает на поверхности, если р ж = р т ; тело тонет, если р т > р ж ; тело всплывает, если р т < р ж.

2.4 .От чего зависит выталкивающая сила?

Выталкивающая сила зависит: от Vт, от плотности жидкости, глубины погружения, от формы предмета при равном объёме.

3. Порядок выполнения работы.

3.1. Эксперимент с яйцом.

Цель работы :

    Исследовать поведение сырого яйца в жидкостях разного вида.

    Доказать зависимость выталкивающей силы от плотности жидкости. Ход работы :

1.Взять сырое яйцо и жидкости разного вида:

    чистая вода,

    насыщенный, соленый раствор,

2.Определить силу тяжести, действующую на яйцо в воздухе и в жидкостях разного рода поочередно.

Результаты исследований :

    Результирующая сила, действующая на яйца в воздухе, оказалась больше, чем в жидкости.

    Результирующая сила, действующая на яйца в жидкостях разного рода, оказалась разной

Вывод

3.2. Эксперимент с картофелем.

Цель работы :

    Исследовать поведение картофеля в жидкостях разного вида.

    Доказать зависимость выталкивающей силы от плотности жидкости.

Ход работы :

1.Взять картофель и жидкости разного вида.

    чистая вода,

    насыщенный, соленый раствор,

2.Определить силу тяжести, действующую в жидкостях разного рода.

Результаты исследования:

    Результирующая сила, действующая на картофель в воздухе, оказалась больше, чем в жидкости.

    Результирующая сила, действующая на картофель в жидкостях разного вида, оказалась разной

(чем больше плотность жидкости, тем результирующая сила меньше)

Вывод

На эксперименте показано, что выталкивающая сила зависит от объёма тела и плотности жидкости. Результирующая сила, которая определяет поведение тела в жидкости, зависит от массы, объёма тела и плотности жидкости.

5. Список литературы

1.Интернет-ресурсы

2. Физика 7 класс А.В. Пёрышкин, Издательство «ДРОФА»

6. Приложения

(рис.1)

При приготовлении раствора соли определенной плотности хозяйки погружают в него сырое яйцо: если плотность раствора недостаточна, яйцо тонет, если достаточна — всплывает. Аналогично определяют плотность сахарного сиропа при консервации. из материала данного параграфа вы узнаете, когда тело плавает в жидкости или газе, когда всплывает и когда тонет.

Обосновываем условия плавания тел

Вы наверняка можете привести множество примеров плавания тел. Плавают корабли и лодки, деревянные игрушки и воздушные шарики, плавают рыбы, дельфины, другие существа. А от чего зависит способность тела плавать?

Проведем опыт. Возьмем небольшой сосуд с водой и несколько шариков, изготовленных из разных материалов. Будем поочередно погружать тела в воду, а потом отпускать их без начальной скорости. Далее в зависимости от плотности тела возможны разные варианты (см. таблицу).

Вариант 1. Погружение. Тело начинает тонуть и в конце концов опускается на дно сосуда. Выясним, почему это происходит. На тело действуют две силы:

Тело погружается, а это значит, что сила, направленная вниз, больше:

тело тонет в жидкости или газе, если плотность тела больше, чем плотность жидкости или газа.

Вариант 2. Плавание внутри жидкости. Тело не тонет и не всплывает, а остается плавать внутри жидкости.

Попробуйте доказать, что в данном случае плотность тела равна плотности жидкости:

тело плавает внутри жидкости или газа, если плотность тела равна плотности жидкости или газа.

Вариант 3. Всплытие. Тело начинает всплывать и в конце концов останавливается на поверхности жидкости, погрузившись в жидкость частично.

Пока тело всплывает, архимедова сила больше силы тяжести:

Остановка тела на поверхности жидкости означает, что архимедова сила и сила тяжести уравновешены: ^ тяж = F арх.

тело всплывает в жидкости или газе либо плавает на поверхности жидкости, если плотность тела меньше, чем плотность жидкости или газа.

Наблюдаем плавание тел в живой природе

Тела обитателей морей и рек содержат в своем составе много воды, поэтому их средняя плотность близка к плотности воды. Чтобы свободно двигаться в жидкости, они должны «управлять» средней плотностью своего тела. Приведем примеры.

У рыб с плавательным пузырем такое управление происходит за счет изменения объема пузыря (рис. 28.1).

Моллюск наутилус (рис. 28.2), обитающий в тропических морях, может быстро всплывать и снова опускаться на дно благодаря тому, что может менять объем внутренних полостей в организме (моллюск живет в закрученной спиралью раковине).

Распространенный в Европе водяной паук (рис. 28.3) несет с собой в глубину воздушную оболочку на брюшке — именно она дает ему запас плавучести и помогает вернуться на поверхность.

Учимся решать задачи

Задача. Медный шар массой 445 г имеет внутри полость объемом 450 см 3 . Будет ли этот шар плавать в воде?

Анализ физической проблемы. Чтобы ответить на вопрос, как поведет себя шар в воде, нужно плотность шара (шара) сравнить с плотностью

в °ды (воды) .

Для вычисления плотности шара следует определить его объем и массу. Масса воздуха в шаре незначительна по сравнению с массой меди, поэтому т шара = т меди. Объем шара — это объем медной оболочки У меди и объем полости V - . Объем медной оболочки можно определить, зная

массу и плотность меди.

О плотностях меди и воды узнаем из таблиц плотностей (с. 249).

Задачу целесообразно решать в представленных единицах.

2. Зная объем и массу шара, определим его плотность:

Анализ результата: плотность шара меньше плотности воды, поэтому шар будет плавать на поверхности воды.

Ответ: да, шар будет плавать на поверхности воды.

Подводим итоги

Тело тонет в жидкости или газе, если плотность тела больше, чем плотность жидкости или газа (р т >р ж)· Тело плавает внутри жидкости или газа, если плотность тела равна плотности жидкости или газа (т =р ж). Тело всплывает в жидкости или газе либо плавает на поверхности жидкости, если плотность тела меньше плотности жидкости или газа

Контрольные вопросы

1. При каком условии тело будет тонуть в жидкости или газе? Приведите примеры. 2. Какое условие нужно выполнить, чтобы тело плавало внутри жидкости или газа? Приведите примеры. 3. Сформулируйте условие, при котором тело, находящееся в жидкости или газе, всплывает. Приведите примеры. 4. При каком условии тело будет плавать на поверхности жидкости? 5. Для чего и как обитатели морей и рек изменяют свою плотность?

Упражнение № 28

1. Будет ли однородный свинцовый брусок плавать в ртути? в воде? в подсолнечном масле?

2. Расположите шарики, изображенные на рис. 1, в порядке увеличения плотности.

3. Будет ли брусок массой 120 г и объемом 150 см 3 плавать в воде?

4. По рис. 2 объясните, как подводная лодка осуществляет погружение и всплытие.

5. Тело плавает в керосине, полностью в него погрузившись. Определите массу тела, если его объем равен 250 см 3 .

6. В сосуд налили три жидкости, которые не смешиваются, — ртуть, воду, керосин (рис. 3). Затем в сосуд опустили три шарика: стальной, пенопластовый и дубовый.

Как расположились слои жидкостей в сосуде? Определите, где какой шарик. Ответы поясните.

7. Определите объем погруженной в воду части машины-амфибии, если на машину действует архимедова сила 140 кН. Какова масса машины-амфибии?

8. Составьте задачу, обратную задаче, рассмотренной в § 28, и решите ее.

9. Установите соответствие между плотностью тела, плавающего в воде, и частью этого тела, находящейся над поверхностью воды.

А р т = 400 кг/м 3 1 0

Б р т = 600 кг/м 3 2 °Д

В р т = 900 кг/м 3 3 0 , 4

Г р т = 1000 кг/м 3 4 0 , 6

10. Прибор для измерения плотности жидкостей называется ареометром. Воспользовавшись дополнительными источниками информации, узнайте о строении ареометра и принципе его действия. Напишите инструкцию, как пользоваться ареометром.

11. Заполните таблицу. Считайте, что в каждом случае тело полностью погружено в жидкость.


Экспериментальное задание

«Картезианский водолаз». Сделайте физическую игрушку, идею которой придумал французский ученый Рене Декарт. В пластиковую банку, плотно закрывающуюся крышкой, налейте воду и поместите в нее отверстием вниз небольшую мензурку (или маленький пузырек из-под лекарства), частично заполненную водой (см. рисунок). Воды в мензурке должно быть столько, чтобы мензурка чуть выступала над поверхностью воды в банке. Плотно закройте банку и сожмите ее боковые стенки. Проследите за поведением мензурки. Объясните действие данного устройства.

ЛАБОРАТОРНАя РАБОТА № 10

Тема. Определение условий плавания тел.

Цель: опытным путем определить, при каком условии: тело плавает на поверхности жидкости; тело плавает внутри жидкости; тело тонет в жидкости.

Оборудование: пробирка (или небольшой пузырек из-под лекарства) с пробкой; нить (или проволока) длиной 20-25 см; емкость с сухим песком; измерительный цилиндр, до половины наполненный водой; весы с разновесами; бумажные салфетки.

указания к работе

Подготовка к эксперименту

1. Прежде чем приступить к выполнению работы, убедитесь, что вы знаете ответы на следующие вопросы.

1) Какие силы действуют на тело, погруженное в жидкость?

2) По какой формуле находят силу тяжести?

3) По какой формуле находят архимедову силу?

4) По какой формуле находят среднюю плотность тела?

2. Определите цену деления шкалы измерительного цилиндра.

3. Закрепите пробирку на нити так, чтобы, держа за нить, можно было погрузить пробирку в измерительный цилиндр, а затем вынуть ее.

4. Вспомните правила работы с весами и подготовьте весы к работе. Эксперимент

Строго соблюдайте инструкцию по безопасности (см. форзац). Результаты измерений сразу заносите в таблицу.

Опыт 1. Определение условия, при котором тело тонет в жидкости.

1) Измерьте объем воды V 1 в измерительном цилиндре.

2) Заполните пробирку песком. Закройте пробку.

3) Опустите пробирку в измерительный цилиндр. В результате пробирка должна оказаться на дне цилиндра.

4) Измерьте объем V 2 воды и пробирки; определите объем пробирки:

5) Вытащите пробирку, протрите ее салфеткой.

6) Положите пробирку на весы и измерьте ее массу с точностью до 0,5 г. Опыт 2. Определение условия, при котором тело плавает внутри жидкости.

1) Отсыпая песок из пробирки, добейтесь, чтобы пробирка свободно плавала внутри жидкости.

Опыт 3. Определение условия, при котором тело всплывает и плавает на поверхности жидкости.

1) Отсыпьте из пробирки еще некоторое количество песка. Убедитесь, что после полного погружения в жидкость пробирка всплывает на поверхность жидкости.

2) Повторите действия, описанные в пунктах 5-6 опыта 1.

Обработка результатов эксперимента

1. Для каждого опыта:

1) выполните схематический рисунок, на котором изобразите силы, действующие на пробирку;

2) вычислите среднюю плотность пробирки с песком.

2. Занесите в таблицу результаты вычислений; завершите ее заполнение.

Анализ эксперимента и его результатов

Проанализировав результаты, сделайте вывод, в котором укажите, при каком условии: 1) тело тонет в жидкости; 2) тело плавает внутри жидкости; 3) тело плавает на поверхности жидкости.

Творческое задание

Предложите два способа определения средней плотности яйца. Запишите план проведения каждого опыта.

Это материал учебника