Биоэнергетические процессы при мышечной деятельности. Анаэробные пути ресинтеза атф Гидролиз и ресинтез атф

Энергия для мышечного сокращения, биохимические процессы, протекающие при мышечной работе.

Спасительный ресинтез.

Конкретно, преобразовать химическую энергию (ее свободную часть, которая – в фосфатных связях) в механическую – энергию движения (полета, бега и скольжения) может только АТФ. Она обеспечивает энергией процесс укорочения спайки, соответственно, сокращение мышцы в целом (и еще поставляет энергию на образование ионов Са ++ , участвующих в сокращении). Живая клетка постоянно поддерживает рабочую концентрацию АТФ на уровне примерно 0,25 %, в том числе и при интенсивной мышечной работе. Если (в случае нарушений в обмене) произойдет увеличение концентрации АТФ, то сократительная способность мышцы нарушится (она будет похожа на «тряпку»), если уменьшение – наступит ригор – состояние стойкого не проходящего сокращения («окаменение»). Рабочей концентрации АТФ хватает на секунду мощной работы (3 – 4 одиночных сокращения). Во время длительной мышечной деятельности, рабочая концентрация АТФ поддерживается за счет реакций по ее восстановлению. С целью обеспечения нормальной (длительной) работы мышц в процессе обмена веществ АТФ восстанавливается с такой же скоростью, с какой она рас­щепляется .

Вспомним, что расщепление АТФ это реакция ферментативного гидролиза, и ее можно выразить уравнением:

АТФ-аза + АТФ + Н 2 О ---> АДФ + Н 3 РО 4

Энергию на ресинтез АТФ (она же потом выделится при расщеплении – около 40 кДж на 1 моль) необходимо получить за счет реакций, протекающих с высвобождением энергии (катаболических). Поэтому на клеточном уровне реакция гидролиза АТФ сопряжена с реакциями, обеспечивающими ресинтез АТФ. В ходе таких реакций образуются промежуточные макроэргические соединения, имеющие в своем составе фосфатную группу, которую вместе с запасом свободной энергии передают на АДФ. Такие реакции переноса (передачи «эстафетной палочки»), катализируемые ферментами фосфотрансферазами, называют реакциями трансфосфорилирования или перефосфорилирования. Макроэргические соеди­нения, необходимые для ресинтеза АТФ, либо постоянно присутствуют, например, креатинфосфат (накапливается в симпласте), либо образуются (дифосфоглицериновая кислота, фосфопировиноградная кислота) в окислительных процессах (катаболических).

Ресинтез АТФ при мышечной деятельности может осуществ­ляться двумя путями: за счет реакций без участия кислорода – анаэробных (когда кислородная доставка к мышцам не успевает или затруднена) и за счет окислительных процессов в клетках (с участием кислорода, которым мы дышим, и который спортсмен учащенно вдыхает при нагрузках, и в начальной фазе отдыха).

В скелетных мышцах человека выявлено три вида ана­эробных процессов, в ходе которых осуществляется ресинтез АТФ:

- креатинфосфокиназная реакция (фосфогенный или алактатный анаэробный процесс), где ресинтез АТФ происходит за счет перефосфорилирования между креатинфосфатом и АДФ;

- гликолиз (лактацидный анаэробный процесс), где ресинтез АТФ осуществляется по ходу ферментативного анаэробного рас­щепления углеводов, заканчивающегося образованием молочной кислоты.

- миокиназная реакция , при которой ресинтез АТФ осущест­вляется за счет дефосфорилирования определенной части АДФ;

Для сравнения и количественной оценки процессов различных видов преобразования энергии при мышечной деятельности используют три основных критерия:

- критерий мощности – указываетскорость преобразования энергии в данном процессе (упражнении);

- критерий емкости – отражает общие запасы энергетиче­ских веществ (измеряется количеством освобождаемой энергии и выполнен­ной работы);

- критерий эффективности – характеризует соотношение между энергией, затраченной на ресинтез АТФ, и общим количест­вом энергии, выделенной в ходе данного процесса (упражнения).

Процессы преобразования энергии, анаэробные и аэробный, различаются по мощности, емкости и эффективности. Анаэробные процессы преобладают при выполнении кратковременных упражнений высокой интенсивности, аэробные – при длительной работе умеренной интенсивности.

Креатинфосфокиназная реакция ресинтеза АТФ. (Режим «гепард»).

Креатинфосфат (КрФ) в мышцах прикреплен к сократительным белкам миофибрилл или связан с мембранами ЭПР. А с сократительным белком актином связан фермент креатинфосфокиназа (КФК), который катализирует реакцию ресинтеза АТФ путем перефосфорилирования между КрФ и АДФ:

КрФ + АДФ ↔ АТФ + Креатин

Эта реакция ресинтеза АТФ (под кодовым названием) – креатинфосфокиназная включается в момент начала мышечной работы и достигает максимума скорости уже ко 2-й секунде работы, поскольку реагенты, АДФ и КрФ, локализованы в миофибриллах близко друг от друга. С максималь­ной скоростью КрФ-реакция протекает до тех пор, пока значительно не снизится концентрация КрФ. АТФ и запасы КрФ (его в 3 раза больше, чем АТФ) обеспечивают в ходе КрФ-реакции поддержание усилий максимальной мощ­ности в течение 10 – 15 сек (как раз, чтобы гепард успел догнать зазевавшуюся антилопу).

Максимальной активностью фермент КФК обладает в слабощелочной среде, при значительном снижении внутриклеточного рН (закислении среды) – ингибируется. Активируют креатинфосфокиназу ионы Са ++ , которые высвобождаются при образовании спайки в процессе мышечного сокращения.

Установлено, что максимальная креатинфосфо­киназная (значит, за счет КрФ-реакции) мощность упражнения, составляет около 3,80 кДж/кг веса тела в мину­ту (а сколько это в килограммах штанги, интересно?). Интенсивность и (или) величина мышечного напряжения прямо пропорционально влияют на скорость расщепления КрФ в работаю­щих мышцах. При мощном усилии скорость КФК реакции в первые секунды очень высока. Когда запасы КрФ в мышцах снижаются примерно на 1/3 (через 5 – 6 сек), скорость креатинфосфокиназной реакции уменьшается, и ресинтез АТФ начинают обеспечивать другие процессы – гликолиз и дыхание. С увеличением длительности упражнения (рабо­ты) примерно к 30-й секунде скорость КрФ-реакции уменьшается вдвое, через 3 минуты она «падает» до 1,5% от начального зна­чения. (И, если гепард не поймал антилопу за свои спринтерские 10 – 15 секунд, то прекращает безнадежную погоню за несосотоявшейся жертвой, более выносливой: гликолитически и аэробно, и останавливается отдышаться – восстановиться).

Креатинфосфокиназная реакция легко обратима и восстановление запасов КрФ происходит быстро (конечно, если невредимыми остались исходные компоненты). Когда мощная нагрузка прекращается избыток АТФ усиливает реакцию ресинтеза запасов КрФ до исходного уровня. В ходе длительной умеренной нагрузки в аэробных условиях (длинные дистанции) КрФ также частично восстанавливается (так что и на финишный рывок может хватить).

Креатинфосфокиназная реакция преобладает в энергетическом обеспечении работающих мышц при выполнении кратковременных упражнений максимальной мощности: бег на короткие дистанции, прыжки, метания, броски, тяжелоатлетические упражнения и т. п. КрФ-реакция создает возможность быстрого перехода от покоя к работе, «спасает» при внезапных изменениях темпа, обеспечивает возможность финишного ускорения (и, в случае необходимости, дает возможность быстро удрать или догнать – в режиме «гепард»). Отсюда вывод: креатинфосфокиназная реакция обеспечивает локальную мышечную выносливость.

Ресинтез АТФ в гликолитическом процессе. Режим «антилопа».

В ходе креатинфосфокиназной реакции увеличивается концентрация свободной АДФ в миофибриллах при работе мышц. Этот фактор играет роль инициатора ресинтеза АТФ за счет анаэробного гликолиза, свидетельствуя о снижении запасов креатинфосфата. В процессе гликолиза внутри­мышечные запасы гликогена и глюкоза, поступающая в клетки из крови, ферментативно расщепляются до молочной кислоты. При этом активация ферментов фосфорилазы и гексокиназы, катализирующих реакции гликолиза, осуществляется при повышении концентрации АДФ и неорга­нического фосфата в саркоплазме. Ионы Са 2++ освобождающиеся в ходе мышечной работы, также способствуют быстрому включению гликолиза в процесс ресинтеза АТФ.

Максимальная мощность гликолиза меньше, чем мощность креатинфосфокиназной реакции, но в 2 – 3 раза выше мощности аэробного процесса. К концу 1-й минуты физической нагрузки анаэробный гликолиз – это уже основной источник ресинтезируемой АТФ. Максимальная скорость гликолиза отмечается на 20 – 30-й секунде после начала работы. С увеличением времени выполнения работы запасы мышечного гликогена относительно быстро расходуются, к тому же снижается активность гликолитических ферментов. Увеличение концентрации молочной кислоты (гликолитического метаболита) замедляет гликолиз, к 15-й минуте после начала работы его скорость уменьшается вдвое.

Гликолитический режим упражнения находится в интервале от 30 секунд до 2,5 минут и обеспечивается запасами углеводов (гликогена), возможностями буферных систем. Связанный с этим потенциалом параметр называют – м етаболическая емкость гликолиза . Емкость гликолиза более чем в 10 раз (то есть на порядок) больше емкости КрФ-реакции. При этом процесс гликолиза не является высокоэффективным, так как при анаэробном расщеплении глюкозы (до молочной кислоты) высвобождается только десятая часть энергии, остальная может быть извлечена путем аэробного доокисления. Из этой выделившейся энергии, в доступную для использования форму – в макроэргические фосфатные связи АТФ, преобразуется только часть, отсюда метаболи­ческая эффективность гликолиза имеет к.п.д. от 0,35 – 0,52. В процессе анаэробного гликолиза примерно половина всей выделяемой энергии превращается в тепло. Температура в работающих мышцах (а не во всем теле) повышается до 41 – 42°С.

Образование 1 моля молочной кислоты при гликолизе соответствует ресинтезу от 1,0 до 1,5 моля АТФ. «Выход» молочной кислоты при анаэроб­ной работе находится в прямой зависимости от мощности и общей продолжительности упражнения, но накопление молочной кислоты вызывает изменение концентрации водородных ионов во внутриклеточной среде организма. Уме­ренный сдвиг рН в кислую сторону активирует работу ферментов дыхательного цикла в митохондриях, а значительный сдвиг наоборот – ведет к инактивации (угнетению) ферментов, ре­гулирующих сокращение мышц и скорость анаэробного ресинтеза АТФ.

Увеличение количества молочной кислоты в саркоплазматическом пространстве мышц вызывает изменение осмотическо­го давления: вода из межклеточной среды поступает внутрь мышечных волокон, вызывая их набухание и ригидность. Значительные изменения осмотического давления в мышцах – причина болевых ощущений.

Молочная кислота легко диффундирует через клеточные мем­браны по градиенту концентрации. Поступая из работающих мышц в кровь, она вступает во взаимодействие с бикарбонатной буфер­ной системой, что приводит к выделению«неметаболического» из­бытка СО 2 .

Уменьшение рН (увеличение концентрации водородных ионов) и повышение выхода СО 2 метаболическим путем активируют дыхательный центр: выход молочной кис­лоты в кровь резко усиливает легочную вентиляцию и, соответственно, поставку кислорода к работающим мышцам. Накопление молочной кислоты, появление избыточного СО 2 , изменение рН и гипервентиляция лег­ких отражают усиление гликолиза в мышцах и, обычно, обнару­живаются уже при интенсивности выполняемого упражнения около 50% от максимальной аэробной мощности. Этот уровень нагрузки обозначается как «порог анаэробного обме­на» .

Гликолитическое энергообеспечение мышц – гликолиз играет важную роль при напряженной мышечной деятельности в условиях неадек­ватного (не в соответствии с потребностями) снабжения тканей кислородом. Гликолиз служит биохимической основой скоростной выносливости: он является преобладающим источником энергии в упражнениях, предельная про­должительность которых составляет от 30 секунд до 2,5 мин (бег на сред­ние дистанции, плавание на 100 и 200 м, велосипедные гонки на треке и т. п.); за счет гликолиза совершаются длительные ускорения по ходу упражнения и на финише дистанции. (Антилопе скоростная выносливость спасает жизнь).

Ресинтез АТФ в аэробном процессе. Режим «лошадь».

Аэробный механизм ресинтеза АТФ отличается наибольшей производительностью: в обычных условиях на его долю приходит­ся около 90% от общего количества АТФ, ресинтезируемой в ор­ганизме. Ферментные системы аэробного обмена расположены в основном в митохондриях клеток. Окисление может протекать по суб­стратному циклу (водород от метаболитов отщепляется и акцептируется НАД или ФАД) – первичное окисление и интермедиаторному циклу (водород, акцепти­рованный НАД и ФАД в реакциях его отщепления – дегидрогенирования, через сис­тему дыхательных ферментов передается на кислород), в котором образуется вода – это терминальное окисление.

Интенсивное дыхание продолжается до тех пор, пока организм испытывает потребность в энергии для выполнения ра­боты (можете проверить опытным путем). Когда эта потребность удовлетворена, и большая часть АДФ превращена в АТФ, устанавливается дыхательный конт­роль . Соотношение АТФ и АДФ четко регулирует функционирование цепи переноса электронов (и протонов) в соответствии с энергетическими потребностями клетки.

Эффективность процесса окислительного фосфорилирования оценивается по величине отношения неорганического фосфата (связанного при синтезе АТФ) к поглощенному кислороду (коэффици­ент Р/0) . В общем, при переносе двух атомов водоро­да по дыхательной цепи от субстратов, отдающих свои электроны НАД, образуется 3 моля АТФ, а при окислении других субстратов, которые отдают свои электроны в дыхательную цепь при участии флавопротеидов, – только 2. К примеру, при окислении аскорбиновой кислоты, которое происходит при участии цитохрома С в обход двух первых этапов сопряжения, синтезируется 1 моль АТФ.

Состояние митохондриальной мембра­ны и активность ферментов дыхательной цепи подвержены действию разобщающих факторов , которые могут блокировать образова­ние АТФ при переносе электронов на кислород. Разобщаю­щее действие на процесс окислительного фосфорилирования в митохондриях скелетных мышц оказывают гормон щитовидной же­лезы тироксин, непредельные жирные кислоты, молочная кислота (при высокой концентрации) и некоторые специфические яды (динитрофенол, пентахлорфенол, салициланилиды, олигомицин. и т. п.). Под действием этих агентов ускоряется перенос электро­нов, но АТФ при этом не образуется, освобождающаяся энергия окисления рассеивается в виде тепла (так и вспыхнуть можно «факелом»).

Наряду с обычным путем окисления субстратов на внутренней мембране существует также путь окисления, локализованный на внешней мембране, в котором принимают участие цитохром С и цитохромоксидаза. Активация этого пути приводит к быстрому окислению внемитохондриального НАД-Н, но он не связан с синтезом АТФ и ведет к рассеиванию энергии в виде тепла. Этот путь используется в качестве буферной системы, поддерживающей необходимую концентрацию окислен­ной формы НАД в саркоплазме и устраняющей избыток молочной кислоты, образующийся при гликолизе.

Из-за отмеченных причин теоретически возможная величина Р/0 практически никогда не достигается в напряженно функционирующей клетке, где используются различные пути окисления и присутствуют факторы, обладающие разобщающим действием.

При качественной оценке эффективности окислительного фосфорилирования учитывают, что в процессе окисления 1 моля НАД-Н высвобождается около 222 кДж энергии, тогда как на образование 3 молей АТФ затрачивается около 125 кДж. Следовательно, эффективность использования химической энергии окисления для синтеза АТФ составляет 125/222=56%. Поскольку в реальных условиях значение коэффициента Р/0 редко превышает 2,5, эффективность аэробного преобразования энергии можно при­нять равной 50%.

Общий выход энергии при аэробном процессе более чем в 10 раз превышает изменение свободной энергии при гликолитическом распаде углеводов в анаэробных условиях. Эффектив­ность преобразования энергии в аэробных условиях составляет 55-60%.

В качестве субстратов аэробных превращений в работающих мышцах могут быть использованы не только внутримышечные за­пасы гликогена, но и внемышечные резервы углеводов (например, гликоген печени), жиров, а в отдельных случаях и белков. Поэто­му суммарная емкость аэробного процесса очень велика и трудно поддается точной оценке. В отличие от гликолиза, метаболическая емкость которого в значительной степени ограничивается измене­ниями гомеостаза вследствие накопления избытка молочной кис­лоты в, организме, конечные продукты аэробных превращений – СО 2 и Н 2 О – не вызывают каких-либо значительных изменений внутренней среды и легко удаляются из организма.

Образование 1 моля АТФ в процессе окислительного фосфорилирования эквивалентно потреблению 3,45 л О 2 . Столько же кисло­рода в покое потребляется в течение 10 – 15 мин, а при напряженной мышечной деятельности (например, во время бега на марафон­скую дистанцию) за 1 мин. Однако в самих работающих мышцах запасы кислорода крайне невелики. Небольшое его количество на­ходится в растворенном состоянии во внутриклеточной плазме и в связанном состоянии с миоглобином мышц. Основное же количе­ство кислорода, потребляемого в мышцах для ресинтеза АТФ, до­ставляется в ткани через систему легочного дыхания и кровообра­щения.

Кислород поступает в клетки путем диффузии. Поддержание критического напряжения О 2 на наружной клеточной мембране независи­мо от изменений скорости расхода кислорода в тканях осу­ществляет сложная система регуляции, в которую наряду с внутриклеточными механиз­мами метаболического контроля входят также нервная и гормональная регуляция внеш­него дыхания, центрального и периферического кровообращения.

Максимальная мощность аэробного процесса в равной мере зависит как от скорости утилизации О 2 в клетках (а она, в свою оче­редь, от общего числа митохондрий в клетке, количества и актив­ности ферментов аэробного окисления), так и от скорости постав­ки О 2 в ткани. Мощность аэробного энергообразования оценивает­ся по величине максимального потребления кислорода (МПК), доступного при выполнении мышечной работы. У спортсменов эта величина составляет 5,5 – 6 л/мин, она отражает ско­рость потребления О 2 в работающих мышцах. На скелетные мыш­цы приходится большая часть активной массы тела, и, в целях сравнения аэробных способностей, величины МПК обычно выражают в относительных единицах – в расчете на 1 кг веса тела. У молодых людей, не занимающихся спортом, величина МПК составляет 40 - 45 мл/кг-мин (800 – 1000 Дж/кг-мин), у спортсменов международного класса – 80 – 90 мл/кг-мин (1600 – 1800 Дж/кг-мин).

Наибольшее количество митохондрий, количество и активность ферментов дыхательного цикла отмечены в красных медленно сокращающихся мышечных волокнах. Чем выше процент содержа­ния таких волокон в мышцах, несущих нагрузку при выполнении упражнения, тем больше максимальная аэробная мощность у спортсменов и тем выше уровень их достижений в продолжитель­ных упражнениях.

Ресинтез АТФ в миокиназной реакции. Режим «загнанная лошадь» .

Миокиназная (или аденилаткиназная) реакция происходит в мышцах при значительном увеличении концентрации АДФ в сар­коплазме:

аденилаткиназа АДФ + АДФ →> АТФ + АМФ

Такая ситуация возникает при выраженном мышечном утомле­нии, когда скорость процессов, принимающих участие в ресинтезе АТФ, не уравновешивает скорости расщепления АТФ. С этой точка зрения миокиназную реакцию можно рассматривают как аварийный механизм, обеспечивающий ресинтез АТФ в условиях, когда его невозможно осуществить иными способами.

При усилении миокиназной реакции часть образующейся АМФ необратимо дезаминируется, переходя в инозиновую кис­лоту, и таким образом выводится из сферы энергетического обме­на. Это крайне не выгодно для организма, так как дезаминирование АМФ ведет к уменьшению общих запасов АТФ в мышцах. (Можно так дезаминировать, что восстанавливать будет нечего и не из чего, как «загнанной» лошади). Однако, выявлено, некоторое увеличение концентрации АМФ в саркоплазме при мио­киназной реакции оказывает активирующее влияние на ферменты гликолиза (в частности, на фосфофруктокиназу) и этим способст­вует повышению скорости анаэробного ресинтеза АТФ. С этих позиций миокиназную реакцию рассматривают как своеобразный метаболический усилитель, способствующий передаче сигнала от АТФ-азы миофибрилл на АТФ-синтезирующие системы клетки.

Миокиназная реакция, как и креатинфосфокиназная, легко об­ратима и может быть использована для буферирования резких перепадов в скорости образования и использования АТФ. В случае появления в клетке избытков АТФ они быстро устраняются через миокиназную реакцию (это относится и к искусственно вводимой АТФ).

Соотношение процессов аэробного и анаэробного ресинтеза АТФ в упражнениях разной мощности и длительности.

Как следует из приведенных характеристик процессов аэробно­го и анаэробного ресинтеза АТФ, в динамике энергообразования при мышечной работе прослеживается четкая закономерность. С началом работы и в первые секунды ее выполнения преобладающее значение в энергетике упражнения имеет ресинтез АТФ в креатинфосфокиназной реакции. По мере исчерпания емкости алактатного резерва в работающих мышцах все большую роль начи­нает играть анаэробный гликолиз. Наибольшей мощности он до­стигает в интервале времени работы от 20 с до 2,5 мин. Но при зна­чительном накоплении молочной кислоты и усилении доставки О 2 к работающим мышцам скорость его постепенно уменьшается, и ко 2 – 3-й минуте работы роль основного поставщика энергии при­нимает на себя аэробный процесс, осуществляющийся в митохондриях клеток.

Наибольшая мощность алактатного анаэробного про­цесса, составляющего сумму реакций расщепления АТФ и креатинфосфата, достигается в упражнениях максимальной интенсив­ности, продолжительностью 5 – 10 сек. В более длительных упражнениях эта мощность быстро понижается, и в упражнениях, занимающих времени более 3 мин, алактатный анаэробный процесс уже не играет су­щественной роли.

Наибольшая мощность энергообразования в процессе анаэроб­ного гликолиза достигается в упражнениях с предельной продол­жительностью от 20 до 40 сек, затем также понижается, и в упраж­нениях, длящихся более 6 – 7 мин, составляет около 1/10 от максимальной мощности этого анаэробного процесса.

Скорость процессов аэробного образования энергии быстро возрастает с увеличением продолжительности упражнений до 5 – 6 мин и мало изменяется при большей продолжительности. В соответствии с этим скорость об­щей энергопродукции непропорционально высока при кратковре­менных упражнениях, но резко понижается с увеличением длительности работы. При выполне­нии упражнения более 10 мин изменения общей энергопродукции целиком определяются скоростью аэробного образования энергии. Относительная доля участия процессов аэробного и анаэробного ресинтеза АТФ в энергетике различных упражнений: бег 42195 – 5000 м – аэробная работа; бег 3000 – 1000 м – смешанная работа; бег 800 – 100 м – анаэробная. В спортив­ной практике упражнения, в которых общая доля участия алактатного и гликолитического анаэробных процессов составляет более 60% от энергетического запроса, обычно обозначают как упражне­ния анаэробного характера. Длительные упражнения, где относи­тельная доля участия аэробного процесса в затратах энергии пре­вышает 70%, называют упражнениями аэробного характера. К промежуточным относятся упражнения смешанного типа энергообеспечения, где аэробные и анаэробные процессы имеют пример­но равное значение. К этим упражнениям относится бег на дистан­ции от 1000 до 3000 м.

Соотношение по мощности и емкости энергообеспечения различных режимов ресинтеза АТФ

И это еще не все. По теме лекции № 4 на лабораторных, практических занятиях студенты изучают следующие вопросы:

1. Превращения в цикле трикарбоновых кислот.

2. Реакции окислительного фосфорилирования, сопряженные с переносом электронов по дыхательной цепи.

Количественные критерии путей ресинтеза АТФ. Аэробный путь ресинтеза АТФ. Анаэробные пути ресинтеза АТФ. Соотношения между различными путями ресинтеза АТФ при мышечной работе.


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Лекция 8. Тема: ЭНЕРГЕТИЧЕСКОЕ ОБЕСПЕЧЕНИЕ МЫШЕЧНОГО СОКРАЩЕНИЯ .

Вопросы:

1. Количественные критерии путей ресинтеза АТФ.

4. Соотношения между различными путями ресинтеза АТФ при мышечной работе. Зоны относительной мощности мышечной работы.

Тема : БИОХИМИЧЕСКМЕ СДВИГИ ПРИ МЫШЕЧНОЙ РАБОТЕ.

Вопросы:

1. Основные механизмы нервно-гуморальной регуляции мышечной деятельности.

2. Биохимические изменения в скелетных мышцах.

3. Биохимические сдвиги в головном мозге и миокарде.

4. Биохимические изменения в печени.

5. Биохимические сдвиги в крови.

6. Биохимические сдвиги в моче.

  1. Количественные критерии путей ресинтеза АТФ.

Сокращение и расслабление мышцы нуждаются в энергии, которая образуется при гидролизе молекул АТФ .

Однако запасы АТФ в мышце незначительны, их достаточно для работы мышцы в течении 2 секунд. Образование АТФ в мышцах называется ресинтезом АТФ.

Таким образом, в мышцах идет два параллельных процесса – гидролиз АТФ и ресинтез АТФ.

Ресинтез АТФ в отличие от гидролиза может протекать разными путями, а всего, в зависимости от источника энергии их выделяют три: аэробный (основной), креатинфосфатный и лактатный.

Для количественной характеристики различных путей ресинтеза АТФ обычно используют несколько критериев.

1. Максимальная мощность или максимальная скорость – это наибольшее количество АТФ, которое может образоваться в единицу времени за счет данного пути ресинтеза. Измеряется максимальная мощность в калориях или джоулях, исходя из того что один ммоль АТФ соответствует физиологическим условиям примерно 12 кал или 50 Дж. Поэтому данный критерий имеет размерность кал/мин-кг мышечной ткани или Дж/мин-кг мышечной ткани.

2. Время развертывания – это минимальное время, необходимое для выхода ресинтеза АТФ на свою наибольшую скорость, то есть для достижения максимальной мощности. Этот критерий измеряется в единицах времени.

3. Время сохранения или поддержания максимальной мощности – это наибольшее время функционирования данного пути ресинтеза АТФ с максимальной мощностью.

4. Метаболическая ёмкость – это общее количество АТФ, которое может образоваться во время мышечной работы за счет данного пути ресинтеза АТФ.

В зависимости от потребления кислорода пути ресинтеза делятся на аэробные и анаэробные.

2. Аэробный путь ресинтеза АТФ.

Аэробный путь ресинтеза АТФ иначе называется тканевым дыханием – это основной способ образования АТФ, протекающий в митохондриях мышечных клеток. В ходе тканевого дыхания от окисляемого вещества отнимаются два атома водорода и по дыхательной цепи передаются на молекулярный кислород, доставляемый в мышцы кровью, в результате чего возникает вода. За счет энергии, выделяющейся при образовании воды, происходит синтез молекул АТФ из АДФ и фосфорной кислоты. Обычно на каждую образовавшуюся молекулу воды приходится синтез трех молекул АТФ.

Чаще всего водород отнимается от промежуточных продуктов цикла трикарбоновых кислот (ЦТК). ЦТК – это завершающий этап катаболизма в ходе которого происходит окисление ацетилкофермента А до углекислого газа и воды. В ходе этого процесса от перечисленных выше кислот отнимается четыре пары атомов водорода и поэтому образуется 12 молекул АТФ при окислении одной молекулы ацетилкофермента А.

В свою очередь ацетилкофермент А может образовываться из углеводов, жиров аминокислот, то есть через это соединение в ЦТК вовлекаются углеводы, жиры и аминокислоты.

Скорость аэробного обмена АТФ контролируется содержанием в мышечных клетках A ДФ, который является активатором ферментов тканевого дыхания. При мышечной работе происходит накопление A ДФ. Избыток A ДФ ускоряет тканевое дыхание, и оно может достигнуть максимальной интенсивности.

Другим активатором ресинтеза АТФ является углекислый газ. Избыток этого газа в крови активирует дыхательный центр головного мозга, что в итоге приводит к повышению скорости кровообращения и улучшению снабжения мышцы кислородом.

Максимальная мощность аэробного пути составляет 350-450 кал/мин-кг. По сравнению с анаэробными путями ресинтеза АТФ тканевое дыхание облает более низкими показателями, что ограничено скоростью доставки кислорода в мышцы. Поэтому за счет аэробной пути ресинтеза АТФ могут осуществляться только физические нагрузки умеренной мощности.

Время развертывания составляет 3 – 4 минуты, но у хорошо тренированных спортсменов может составлять 1 мин. Это связано с тем, что на доставку кислорода в митохондрии требуется перестройка практически всех систем организма.

Время работы с максимальной мощностью составляет десятки минут. Это дает возможность использовать данный путь при длительной работе мышц.

По сравнению с другими идущими в мышечных клетках процессами ресинтеза АТФ аэробный путь имеет ряд преимуществ.

1. Экономичность: из одной молекулы гликогена образуется 39 молекул АТФ, при анаэробном гликолизе только 3 молекулы.

2. Универсальность в качестве начальных субстратов здесь выступают разнообразные вещества: углеводы, жирные кислоты, кетоновые тела, аминокислоты.

3. Очень большая продолжительность работы. В покое скорость аэробного ресинтеза АТФ может быть небольшой, но при физических нагрузках она может стать максимальной.

Однако есть и недостатки.

1. Обязательное потребление кислорода, что ограничено скоростью доставки кислорода в мышцы и скоростью проникновения кислорода через мембрану митохондрий.

2. Большое время развертывания.

3. Небольшую по максимальной величине мощность.

Поэтому мышечная деятельность, свойственная большинству видов спорта, не может быть полностью получена этим путем ресинтеза АТФ.

В спортивной практике для оценки аэробного ресинтеза используются следующие показатели: максимальное потребление кислорода (МПК), порог аэробного обмена (ПАО), порог анаэробного обмена (ПАНО) и кислородный приход.

МПК – это максимально возможная скорость потребления кислорода организмом при выполнение физической работы. Чем выше МПК, тем выше скорость тканевого дыхания. Чем тренированнее человек, тем выше МПК. МПК рассчитывают обычно на 1кг массы тела. У людей, не занимающихся спортом МПК 50 мл/мин-кг, а у тренированных людей он достигает 90 мл/мин-кг.

В спортивной практике МПК также используется для характеристики относительной мощности аэробной работы, которая выражается в процентах от МПК. Например, относительная мощность работы, выполняемая с потреблением кислорода 3 л/мин спортсменом, имеющим МПК 6 л/мин, будет составлять 50% от уровня МПК.

ПАО – это наибольшая относительная мощность работы, измеряемая по потреблению кислорода в процентах по отношению к МПК. Большие величины ПАО говорят о лучшем развитии аэробного ресинтеза.

ПАНО – это минимальная относительная мощность работы, также измеренная по потреблению кислорода в процентах по отношению к МПК. Высокое ПАНО говорит о том, что аэробный ресинтез выше в единицу времени, поэтому гликолиз включается при гораздо больших нагрузках.

Кислородный приход – это количество кислорода (сверх дорабочего уровня), использованное во время выполнения данной нагрузки для обеспечения аэробного ресинтеза АТФ. Кислородный приход характеризует вклад тканевого дыхания в энергообеспечение всей проделанной работы. Кислородный приход часто используют для оценки всей проделанной аэробной работы.

Под влиянием систематических тренировок в мышечных клетках возрастает количество митохондрий, совершенствуется кислородно-транспортная функция организма, возрастет количество миоглобина в мышцах и гемоглобина в крови.

3. Анаэробные пути ресинтеза АТФ.

Анаэробные пути ресинтеза АТФ – это дополнительные пути. Таких путей два креатинфосфатный путь и лактатный.

Креатинфосфатный путь связан с веществом креатинфосфатом . Креатинфосфат состоит из вещества креатина, которое связывается с фосфатной группой макроэргической связью. Креатинфосфата в мышечных клетках содержится в покое 15 – 20 ммоль/кг.

Креатинфосфат обладает большим запасом энергии и высоким сродством с АДФ. Поэтому он легко вступает во взаимодействие с молекулами АДФ, появляющимися в мышечных клетках при физической работе в результате реакции гидролиза АТФ. В ходе этой реакции остаток фосфорной кислоты с запасом энергии переносится с креатинфосфата на молекулу АДФ с образованием креатина и АТФ.

Креатинфосфат + АДФ → креатин + АТФ.

Эта реакция катализируется ферментом креатинкиназой . Данный путь ресинтеза АТФ иногда называют креатикиназным.

Креатинкиназная реакция обратима, но смещена в сторону образования АТФ. Поэтому она начинает осуществляться, как только в мышцах появляются первые молекулы АДФ.

Креатинфосфат – вещество непрочное. Образование из него креатина происходит без участия ферментов. Не используемый организмом креатин, выводится из организма с мочой. У мужчин выделение креатинина с мочой колеблется в пределах 18-32 мг/сутки . кг массы тела, а у женщин – 10-25 мг/сутки . кг (это иесть криатининовый коэффициент). Синтез креатинфосфата происходит во время отдыха из избытка АТФ. При мышечной работе умеренной мощности запасы креатинфосфата могут частично восстанавливаться. Запасы АТФ и креатинфосфата в мышцах называют также фосфагены.

Максимальная мощность этого пути составляет 900 -1100 кал/ мин-кг, что в три раза выше соответствующего показателя аэробного пути.

Время развертывания всего 1 – 2 сек.

Время работы с максимальной скоростью всего лишь 8 – 10 сек.

Главным преимуществом креатинфосфатного пути образования АТФ являются

  • малое время развертывания (1-2 сек);
  • высокая мощность.

Эта реакция является главным источником энергии для упражнений максимальной мощности: бег на короткие дистанции, прыжки метания, подъем штанги. Эта реакция может неоднократно включаться во время выполнения физических упражнений, что делает возможным быстрое повышение мощности выполняемой работы.

Биохимическая оценка состояния этого пути ресинтеза АТФ обычно проводится двумя показателями: креатиновому коэффициенту и алактатному долгу.

Креатиновый коэффициент – это выделение креатина в сутки. Этот показатель характеризует запасы креатинфосфата в организме.

Алактатный кислородный долг – это повышение потребления кислорода в ближайшие 4 – 5 мин, после выполнения кратковременного упражнения максимальной мощности. Этот избыток кислорода требуется для обеспечения высокой скорости тканевого дыхания сразу после окончания нагрузки для создания в мышечных клетках повышенной концентрации АТФ. У высококвалифицированных спортсменов значение алактатного долга после выполнения нагрузок максимальной мощности составляет 8 – 10 литров.

Гликолитический путь ресинтеза АТФ , так же как креатинфосфатный является анаэробным путем. Источником энергии, необходимой для ресинтеза АТФ в данном случае является мышечный гликоген. При анаэробном распаде гликогена от его молекулы под действием фермента фосфорилазы поочередно отщепляются концевые остатки глюкозы в форме глюкозо-1-фосфата. Далее молекулы глюезо-1-фосфата после ряда последовательных реакций превращаются в молочную кислоту. Этот процесс называется гликолиз. В результате гликолиза образуются промежуточные продукты, содержащие фосфатные группы, соединенные макроэргическими связями. Эта связь легко переносится на АДФ с образованием АТФ. В покое реакции гликолиза протекают медленно, но при мышечной работе его скорость может возрасти в 2000 раз, причем уже в предстартовом состоянии.

Максимальная мощность – 750 – 850 кал/мин-кг, что в два раза выше, чем при тканевом дыхании. Такая высокая мощность объясняется содержанием в клетках большого запаса гликогена и наличием механизма активизации ключевых ферментов.

Время развертывания 20-30 секунд .

Время работы с максимальной мощностью – 2 -3 минуты.

Гликолитический способ образования АТФ имеет ряд преимуществ перед аэробным путем:

  • он быстрее выходит на максимальную мощность,
  • имеет более высокую величину максимальной мощности,
  • не требует участия митохондрий и кислорода.

Однако у этого пути есть и свои недостатки :

  • процесс малоэкономичен,
  • накопление молочной кислоты в мышцах существенно нарушает их нормальное функционирование и способствует утомлению мышцы.

Общий итог гликолиза может быть представлен в виде следующих уравнений:

С 6 Н 12 О 6 + АДФ + 2 Н 3 РО 4 С 3 Н 6 О 3 + 2 АТФ + 2 Н 2 О;

Глюкоза Молочная

Кислота

[ C 6 Н 10 О 5 ] n + 3 АДФ + 3 Н 3 РО 4 С 3 Н 6 О 3 + [ C 6 Н 10 О 5 ] n _ 1 + 3 АТФ + 2 Н 2 О

Гликоген Молочная

Кислота

Схема анаэробного и аэробного гликолиза

Для оценки гликолиза используют две биохимические методики – измерение концентрации лактата в крови, измерение водородного показателя крови и определение щелочного резерва крови.

Определяют также и содержание лактата в моче. Это дает информацию о суммарном вкладе гликолиза в обеспечение энергией упражнений, выполненных за время тренировки.

Еще одним важным показателем является лактатный кислородный долг. Лактатный кислородный долг – это повышенное потребление кислорода в ближайшие 1 – 1,5 часа после окончания мышечной работы. Этот избыток кислорода необходим для устранения молочной кислоты, образовавшейся при выполнении мышечной работы. У хорошо тренированных спортсменов кислородный долг составляет 20 – 22 л. По величине лактаного долга судят о возможностях данного спортсмена при нагрузках субмаксимальной мощности.

4. Соотношение между различными путями ресинтеза АТФ при мышечной работе. Зоны относительной мощности мышечной работы.

При любой мышечной работе функционируют все три пути ресинтеза АТФ, но включаются они последовательно. В первые секунды работы ресинтез АТФ идет за счет креатинфосфатной реакции, затем включается гликолиз и, наконец, по мере продолжения работы на смену гликолизу приходит тканевое дыхание.

Конкретный вклад каждого из механизмов образования АТФ в энергетическое обеспечение мышечных движений зависит от интенсивности и продолжительности физических нагрузок.

При кратковременной, но очень интенсивной работе (например, беге на 100 м) главным источником АТФ является креатинкиназная реакция. При более продолжительной интенсивной работе (например на средние дистанции) большая часть АТФ образуется за счет гликолиза. При выполнении упражнений большой продолжительности, но умеренной мощности энергообеспечение мышц осуществляется в основном за счет аэробного окисления.

В настоящее время приняты различные классификации мощности мышечной работы. В спортивной биохимии чаще всего используется классификация базирующаяся на том, что мощность обусловлена соотношением между тремя основными путями ресинтеза АТФ. Согласно этой классификации выделяют четыре зоны относительной мощности мышечной работы: максимальной, субмаксимальной, большой и умеренной.

Максимальная мощность может развиваться при работе продолжительностью 15 – 20 сек. Основной источник АТФ при этой работе – креатинфосфат. Только в самом конце креатинкиназная реакция заменяется гликолизом. Примером физических упражнений, выполняемых в зоне максимальной мощности, является бег на короткие дистанции, прыжки в длину и высоту, некоторые гимнастические упражнения, подъем штанги и некоторые другие. Максимальную мощность при этих упражнениях обозначают как максимальную анаэробную мощность .

Работа в зоне субмаксимальной аэробной мощности имеет продолжительность до 5 минут. Ведущий механизм ресинтеза АТФ – гликолиз. Вначале, пока реакции гликолиза не достигли максимальной скорости, образование АТФ идет за счет креатинфосфата, а в конце в процесс включается тканевое дыхание. Работа в этой зоне характеризуется высоким кислородным долгом – 20-22 л. Примером физических нагрузок в этой зоне мощности является бег на средние дистанции, плавание на средние дистанции, велосипедные гонки на треке, спринтерские конькобежные дистанции и др. Такие нагрузки называют лактатными.

Работа в зоне большой мощности имеет предельную продолжительность до 30 мин. Для работы в этой зоне характерен одинаковый вклад гликолиза и тканевого дыхания. Креатинфосфатный путь участвует только в самом начале работы.. Примером упражнений в этой зоне являются бег на 5000 м, бег на коньках на длинные дистанции, лыжные гонки, плавание на средние дистанции и др. Здесь различают нагрузки либо аэробно-анаэробные, либо анаэробно-аэробные.

Работа в умеренной зоне продолжительностью свыше 30 минут происходит преимущественно аэробным путем. Сюда относят марафонский бег, легкоатлетический кросс, шоссейные велогонки, спортивная ходьба, лыжные гонки на длинные дистанции, турпоходы и др.

В ациклических и ситуационных видах спорта (единоборства, гимнастические упражнения, спортивные игры) мощность выполняемой работы многократно меняется. Например, у футболистов бег с умеренной скоростью (зона большой мощности) чередуется с бегом на короткие дистанции со спринтерской скоростью (зона максимальной или субмаксимальной мощности). В то же время у футболистов бывают такие отрезки игры, когда мощность работы снижается до умеренной.

При подготовке спортсменов необходимо применять тренировочные нагрузки, развивающие путь ресинтеза АТФ, являющийся ведущим в энергообеспечении работы в зоне относительной мощности характерной для данного вида спорта.

Тема: БИОХИМИЧЕСКМЕ СДВИГИ ПРИ МЫШЕЧНОЙ РАБОТЕ.

1. Основные механизмы нервно-гуморальной регуляции мышечной деятельности.

Любая физическая работа сопровождается изменениями скорости метаболических процессов. Необходимая перестройка метаболизма во время мышечной деятельности происходит под воздействием нервно-гуморальной регуляции.

Можно выделить следующие механизмы нервно-гуморальной регуляции мышечной деятельности:

  1. При мышечной работе повышается тонус симпатического отдела вегетативной нервной системы, который отвечает за работу внутренних органов и мышц.

В легких под влиянием симпатических импульсов повышается частота дыхания и происходит расширение бронхов. В результате увеличивается легочная вентиляция, что приводит к улучшению обеспечения организма кислородом.

Под влиянием симпатической нервной системы также повышается частота сердечных сокращений, следствием чего является увеличение скорости кровотока и улучшение снабжения органов, в первую очередь мышц, кислородом и питательными веществами.

Симпатическая система усиливает потоотделение, улучшая тем самым терморегуляцию.

Она оказывает замедляющее влияние на работу почек, кишечника. Под влиянием симпатической нервной системы происходит мобилизация жира.

  1. Не менее важную роль в перестройке организма во время мышечной работы выполняют гормоны. Наибольшее значение в биохимическую перестройку при этом вносят гормоны надпочечников.

Мозговой слой надпочечников вырабатывает катехоламины – адреналин и норадреналин. Выделение гормонов мозгового слоя в кровь происходит при различных эмоциях и стрессах. Биологическая роль этих гормонов – создание оптимальных условий для выполнения мышечной работы большой мощности и продолжительности путем воздействия на физиологические функции и метаболизм.

Попадая в кровь, катехоламины дублируют действия симпатических импульсов. Они вызывают повышение частоты дыхания, расширение бронхов. Под действием адреналина повышается частота сердечных сокращений и их сила. Под действием адреналина в организме происходит перераспределение крови в сосудистом русле.

В печени эти гормоны вызывают ускоренный распад гликогена. В жировой ткани катехоламины активизирует липазы, ускоряя тем самым распад жира. В мышцах они активизируют распад гликогена.

Гормоны коркового слоя также активно участвуют в активизации мышечной работы. Их действие заключается в том, что они подавляют действие фермента гексокиназы, чем способствуют накоплению глюкозы в крови. Поскольку эти гормоны не действуют на нервные клетки – это дает возможность питать нервные клетки, поскольку глюкоза для них практический единственный источник энергии. Гормоны – глюкокортикоиды – тормозят анаболические процессы и в первую очередь биосинтез белков. Это дает возможность использовать высвободившиеся молекулы АТФ для работы мышц. Кроме того они стимулируют синтез глюкозы из неуглеводных субстратов.

2. Биохимические изменения в скелетных мышцах.

При выполнении физической работы в мышцах происходит глубокие изменения, обусловленные прежде всего интенсивностью процессов ресинтеза АТФ.

Использование креатинфосфата в качестве источника энергии приводит к снижению его концентрации в мышечных клетках и накоплению в них креатина.

Практически при любой работе для получения АТФ используется мышечный гликоген. Поэтому его концентрация в мышцах снижается независимо от характера работы. При выполнении интенсивных нагрузок в мышцах наблюдается быстрое уменьшение запасов гликогена и одновременное образование и накопление молочной кислоты. За счет накопления молочной кислоты повышается кислотность внутри мышечных клеток. Увеличение содержания лактата в мышечных клетках вызывает также повышением в них осмотического давления. Повышение осмотического давления приводит к тому, что в мышечную клетку из капилляров и межклеточного пространства поступает вода, и мышцы набухают или, как говорят спортсмены, «забиваются».

Продолжительная мышечная работа небольшой мощности вызывает плавное снижение концентрации гликогена в мышцах. В данном случае распад происходит аэробно, с потреблением кислорода. Конечные продукты такого распада – углекислый газ и вода – удаляются из мышечных клеток в кровь. Поэтому после выполнения работы умеренной мощности в мышцах обнаруживается уменьшение содержания гликогена без накопления лактата.

Еще одно важное изменение, возникающее в работающих мышцах – повышение скорости распада белков. Особенно ускоряется распад белков при выполнении силовых упражнений, причем, это затрагивает в первую очередь сократительные белки миофибрилл. Вследствие распада белков в мышечных клетках повышается содержание свободных аминокислот и продуктов их распада – кетокислот и аммиака.

Другими характерным изменением, вызываемым мышечной деятельностью, является снижение активности ферментов мышечных клеток. Одной из причин уменьшения ферментативной активности может быть повышенная кислотность, вызванная появлением в мышцах молочной кислоты.

И наконец, мышечная деятельность может привести к повреждениям внутриклеточных структур – миофибрилл, митохондрий и других биомембран. Так нарушение мембран саркоплазматической цепи ведет к нарушению проведения нервного импульса к цистернам, содержащим ионы кальция. Нарушения целостности сарколеммы сопровождается потерей мышцами многих важных веществ, которые уходят из поврежденной клетки в лимфу и кровь. Нарушается и работа ферментов, встроенных в мембраны. Нарушается работа кальциевого насоса и ферментов тканевого дыхания, расположенных на внутренней поверхности мембран митохондрий.

3. Биохимические сдвиги в головном мозге и миокарде.

Головной мозг. Во время мышечной деятельности в двигательных нейронах коры головного мозга происходит формирование и последующая передача двигательного нервного импульса. Оба эти процесса (формирование и передача нервного импульса) осуществляются с потреблением энергии в виде молекул АТФ. Образование АТФ в нервных клетках происходит аэробно. Поэтому при мышечной работе увеличивается потребление мозгом кислорода из протекающей крови. Другой особенностью энергетического обмена в нейронах является то, что основным субстратом окисления является глюкоза, поступающая с током крови.

В связи с такой спецификой энергоснабжения нервных клеток любое нарушение снабжения мозга кислородом или глюкозой неминуемо ведет к снижению его функциональной активности, что у спортсменов может проявиться в форме головокружения или обморочного состояния.

Миокард. Во время мышечной деятельности происходит усиление и учащение сердечных сокращений, что требует большого количества энергии по сравнению с состоянием покоя. Однако энергоснабжение сердечной мышцы осуществляется главным образом за счет аэробного ресинтеза АТФ. Лишь при ЧСС более 200 уд/мин, включается анаэробный синтез АТФ.

Большие возможности аэробного энергообеспечения в миокарде обусловлены особенностью строения этой мышцы. В отличие от скелетных мышц в миокарде имеется более развитая и густая сеть капилляров, что позволяет извлекать из крови больше кислорода и субстратов окисления. Кроме того, в клетках сердечной мышцы имеется больше митохондрий, содержащих ферменты тканевого дыхания. В качестве источников энергии клетки сердечной мышцы используют и глюкозу, и жирные кислоты, и кетоновые тела, и глицерин. Гликоген миокард сохраняет на «черный день», когда истощаться другие источники энергии.

Во время интенсивной работы сопровождающейся увеличением концентрации лактата в крови, миокард извлекает из крови лактат и окисляет его до углекислого газа и воды.

При окислении одной молекулы молочной кислоты синтезируется до 18 молекул АТФ. Способность миокарда окислять лактат имеет большое биологическое значение. Это дает возможность организму дольше поддерживать в крови необходимую концентрацию глюкозы, что очень существенно для биоэнергетики нервных клеток, для которых глюкоза является почти единственным субстратом окисления. Окисление лактата в миокарде также способствует нормализации кислотно-щелочного баланса, так как при этом в крови снижается концентрация этой кислоты.

4. Биохимические сдвиги в печени.

При мышечной деятельности активируются функции печени, направленные преимущественно на улучшение обеспечения работающих мышц, внемышечными источниками энергии, переносимыми кровью. Ниже описаны наиболее важные биохимические процессы, протекающие в печени во время работы.

1. Под воздействием адреналина повышается скорость распада гликогена с образованием свободной глюкозы. Образовавшаяся глюкоза выходит из клеток печени в кровь, что приводит к возрастанию её концентрации в крови. При этом снижается содержание гликогена. Наиболее высокая скорость распада гликогена наблюдается в печени в начале работы, когда запасы гликогена ещё велики.

2. Во время выполнения физического упражнения клетки печени активно извлекают из крови жир, жирные кислоты, содержание которых в крови возрастает вследствие мобилизации жира из жировых депо. Поступающий в печеночные клетки жир сразу подвергается гидролизу и превращается в глицерин и жирные кислоты. Далее жирные кислоты путем β-окисления расщепляются до ацетилкофермента А, из которого затем образуются кетоновые тела. Кетоновые тела являются важным источником энергии. С током крови они переносятся из печени в работающие органы – миокард и скелетные мышцы. В этих органах кетоновые тела вновь превращаются в ацетилкофермент А, который сразу же аэробно окисляется в цикле трикарбоновых кислот до углекислого газа и воды с выделением большого количества энергии.

3. Еще один биохимический процесс, протекающий в печени во время мышечной работы – это образование глюкозы из глицерина, аминокислот, лактата. Этот процесс идет с затратами энергии молекул АТФ. Обычно такой синтез глюкозы протекает при длительной работе, ведущей к снижению концентрации глюкозы в кровяном русле. Благодаря этому процессу организму удается поддерживать в крови необходимый уровень глюкозы.

4. При физической работе усиливается распад мышечных белков, приводящий к образованию свободных аминокислот, которые далее дезаминируются, выделяя аммиак. Аммиак является клеточным ядом, его обезвреживание происходит в печени, где он превращается в мочевину. Синтез мочевины требует значительного количества энергии. При истощающих нагрузках, не соответствующему функциональному состоянию организма, печень может не справляться с обезвреживанием аммиака, в этом случае возникает интоксикация организма этим ядом, ведущая к снижению работоспособности.

5. Биохимические сдвиги в крови.

Изменения химического состава крови является отражением тех биохимических сдвигов, которые возникают при мышечной деятельности в различных внутренних органах, скелетных мышцах и миокарде.

Биохимические сдвиги, возникающие в крови, в значительной мере зависят от характера работы, поэтому их анализ следует проводить с учетом мощности и продолжительности физических нагрузок.

При выполнении мышечной работы в крови чаще всего обнаруживаются следующие изменения.

1. Изменения концентрации белков в плазме крови. Причин этого две. Во-первых, усиленное потоотделение приводит к уменьшению содержания воды в плазме крови и, следовательно, к ее сгущению. Это вызывает возрастание концентрации веществ, содержащихся в плазме. Во-вторых, вследствие повреждения клеточных мембран наблюдается выход внутриклеточных белков в плазму крови. В этом случае часть белков кровяного русла переходит в мочу, а другая часть используется в качестве источников энергии.

2. Изменение концентрации глюкозы в крови во время работы проходит ряд фаз. В самом начале работы уровень глюкозы возрастает. Глюкоза выходит из печени, где происходит ее образование из гликогена. Кроме того мышцы, имеющие запасы гликогена, на этой стадии в глюкозе из крови остро не нуждаются. Но затем наступает стадия когда гликоген в печени и мышцах заканчивается. Тогда наступает следующая фаза, когда для извлечения энергии используется глюкоза крови. Ну а в конце работы наступает фаза истощения и, как следствие, гипогликемия – снижение концентрации глюкозы в крови.

3. Повышение концентрации в крови лактата наблюдается практически при любой спортивной деятельности, но степень накопления лактата в значительной степени зависит от характера выполняемой работы и тренированности спортсмена. Наибольший подъем уровня молочной кислоты в крови отмечается при выполнении физических нагрузок в зоне субмаксимальной мощности. Так как в этом случае главным источником энергии для работающих мышц является анаэробный гликолиз, приводящий к образованию и накоплению лактата.

Следует помнить, что накопление лактата происходит не сразу, а через несколько минут после окончания работы. Поэтому и измерение уровня лактата нужно проводить через 5 – 7 минут после окончания работы. Если уровень лактата в покое не превышает 1 – 2 ммоль/л, то у высоко-тренированных спортсменов после тренировки он может достигать 20 – 30 ммоль/л.

4. Водородный показатель (рН). При выполнении упражнений субмаксимальной мощности уровень рН может довольно значительно снижаться (на 0,5 ед.)

5. Физические упражнения сопровождаются повышением концентрации свободных жирных кислот и кетоновых тел в крови. Это связано с мобилизацией жира в печени и выходом продуктов этого процесса в кровь.

6. Мочевина. При кратковременной работе концентрация мочевины в крови меняется незначительно, при длительной работе уровень мочевины возрастает в несколько раз. Это связано с усилением метаболизма белков при физических нагрузках.

6. Биохимические сдвиги в моче.

Физические упражнения влияют на физико-химические свойства мочи, сдвиги в которых объясняются существенными сдвигами в химическом составе мочи.

В моче появляются вещества, которые обычно в ней отсутствуют. Эти вещества называют патологическими компонентами. У спортсменов наблюдаются после напряженной работы, следующие патологические компоненты.

1. Белок. Обычно в моче не более 100 мг белка. После тренировки наблюдается значительное выделение мочой белка. Это явление получило название протеинурия. Чем тяжелее нагрузки, тем выше содержание белка . Причиной этого явления, возможно, является повреждение почечных мембран. Однако снижение нагрузок полностью восстанавливает нормальный состав мочи.

2. Глюкоза. В покое глюкоза в моче отсутствует. После завершения тренировки в моче нередко обнаруживается глюкоза. Это обусловлено двумя основными причинами. Первая, избыточное содержание глюкозы в крови при физической работе. Во-вторых нарушение почечных мембран вызывает нарушение процесса обратного всасывания.

3. Кетоновые тела. До работы кетоновые тела в моче не обнаруживаются. После нагрузок с мочой могут выделяться в больших количествах кетоновые тела. Это явление называется кетонурия. Она связана с повышением концентрации кетоновых тел в крови и наращением реабсорбции их почками.

4. Лактат. Появление молочной кислоты в моче обычно наблюдается после тренировок, включающих упражнения субмаксимальной мощности. По выделению лактата с мочой можно судить об общем вкладе гликолиза в энергетическое обеспечение всей работы, выполненной спортсменом за тренировку.

Наряду с влиянием на химический состав мочи физические нагрузки меняют и физико-химические свойства мочи.

Плотность. Объем мочи после тренировок, как правило, меньше, так как большая часть воды уходит с потом. Это сказывается на плотности мочи, которая возрастает. Увеличение плотности мочи связано также с появлением в ней веществ, которые обычно в моче отсутствуют.

Кислотность. Кетоновые тела и молочная кислота, выделяемые с мочой, меняют её кислотность. Обычно рН мочи 5 – 6 ед. После работы он может снизиться до 4 – 4,5 ед.

Чем интенсивнее физические нагрузки – тем значительнее изменения, наблюдаемые в составе мочи и крови.

Другие похожие работы, которые могут вас заинтересовать.вшм>

378. БИОХИМИЯ МЫШЦ И МЫШЕЧНОГО СОКРАЩЕНИЯ 712.31 KB
БИОХИМИЯ МЫШЦ И МЫШЕЧНОГО СОКРАЩЕНИЯ. Механизм мышечного сокращения и расслабления. Важнейшей особенностью функционирования мышц является то что в процессе мышечного сокращения происходит непосредственное превращение химической энергии АТФ в механическую энергию сокращения мышц. Биохимически они различаются механизмами энергетического обеспечения мышечного сокращения.
10034. Пути сокращения производственных запасов 106.84 KB
На сегодняшний момент времени, главная задача предприятий - значительное повышение качества производственного процесса, его эффективности, отдачи вложений, в том числе и производственных, которые являются базой всего производства.
15050. Пути сокращения затрат предприятия ООО «Томак-2» 138.77 KB
Проблемы снижения затрат на предприятии, поиска путей их решения являются сложными и интересными вопросами современной экономики предприятия. Проблема снижения затрат очень актуальна в современных экономических условиях, так как ее решение позволяет каждому конкретному предприятию выжить в условиях жесткой рыночной конкуренции, построить крепкое и сильное предприятие, которое будет иметь хороший экономический потенциал.
5067. Гладкие мышцы. Строение, функции, механизм сокращения 134.79 KB
Мышцы или мускулы от лат. Мышцы позволяют двигать частями тела и выражать в действиях мысли и чувства. Гладкие мышцы являются составной частью некоторых внутренних органов и участвуют в обеспечении функции выполняемые этими органами.
17984. Перспективы сокращения и социально-экономическое значение государственного долга Российской Федерации 395.55 KB
Причины возникновения государственного долга Российской Федерации. Анализ и современное состояние государственного внутреннего долга Российской Федерации. Анализ и современное состояние государственного внешнего долга Российской Федерации. Перспективы сокращения и социально-экономическое значение государственного долга Российской Федерации...
11490. Пути сокращения длительности товарооборота предприятий розничной торговли (на материалах ООО «Диана», г. Курган) 176.54 KB
Размер товарных запасов является синтетическим показателем, позволяющим в известной мере оценивать результаты хозяйственной деятельности, как отдельных торговых предприятий, организаций, так и отрасли в целом, а также эффективность использования материальных и трудовых ресурсов.
12159. О стратегической стабильности в прошлом и настоящем и ее значении для выработки подходов к ограничению и сокращения вооружений 17.33 KB
Проведен анализ угроз стратегической стабильности сформировавшихся за последние годы прежде всего за счет распространения ядерного оружия. Показано что стратегическая стабильность в большей степени чем прежде зависит от нарушения региональной стабильности. Проблема обеспечения ядерной стабильности остается актуальной и для диадных отношений РоссияСША.
7533. Программное обеспечение 71.79 KB
Антивирусы Как ни странно но до сих пор нет точного определения что же такое вирус. либо присущи другим программам которые никоим образом вирусами не являются либо существуют вирусы которые не содержат указанных выше отличительных черт за исключением возможности распространения. макровирусы заражают файлы документов Word и Excel. Существует большое количество сочетаний например файловозагрузочные вирусы заражающие как файлы так и загрузочные сектора дисков.
9261. Качество и его обеспечение 10.04 KB
Различные определения понятия качества таким образом можно разделить на два основных вида: трактующие понятия качества как пригодность к употреблению или как соответствие техническим и прочим требованиям. Ни одно из многих определений качества не является универсальным. Возникает вопрос: что же такое система управления качеством В большинстве зарубежных стран под системой управления качеством понимается система интегрирующая деятельность различных производственных групп и ориентированная на...
7780. Обеспечение информационной безопасности 50.64 KB
При рассмотрении жизни общества на исторически длительных интервалах времени (сотни и более лет) с позиций Общей теории управления можно выделить шесть уровней обобщенных средств управления обществом. Уровни средств управления связаны непосредственно с воздействием на общество, в том числе и при помощи войн

Анаэробные пути ресинтеза АТФ – это дополнительные пути. Таких путей два креатинфосфатный путь и лактатный.

Креатинфосфатный путь связан с веществом креатинфосфатом . Креатинфосфат состоит из вещества креатина, которое связывается с фосфатной группой макроэргической связью. Креатинфосфата в мышечных клетках содержится в покое 15 – 20 ммоль/кг.

Креатинфосфат обладает большим запасом энергии и высоким сродством с АДФ. Поэтому он легко вступает во взаимодействие с молекулами АДФ, появляющимися в мышечных клетках при физической работе в результате реакции гидролиза АТФ. В ходе этой реакции остаток фосфорной кислоты с запасом энергии переносится с креатинфосфата на молекулу АДФ с образованием креатина и АТФ.

Креатинфосфат + АДФ → креатин + АТФ.

Эта реакция катализируется ферментом креатинкиназой . Данный путь ресинтеза АТФ иногда называют креатикиназным.

Креатинкиназная реакция обратима, но смещена в сторону образования АТФ. Поэтому она начинает осуществляться, как только в мышцах появляются первые молекулы АДФ.

Креатинфосфат – вещество непрочное. Образование из него креатина происходит без участия ферментов. Не используемый организмом креатин, выводится из организма с мочой. У мужчин выделение креатинина с мочой колеблется в пределах 18-32 мг/сутки . кг массы тела, а у женщин – 10-25 мг/сутки . кг (это иесть криатининовый коэффициент). Синтез креатинфосфата происходит во время отдыха из избытка АТФ. При мышечной работе умеренной мощности запасы креатинфосфата могут частично восстанавливаться. Запасы АТФ и креатинфосфата в мышцах называют также фосфагены.

Максимальная мощность этого пути составляет 900 -1100 кал/ мин-кг, что в три раза выше соответствующего показателя аэробного пути.

Время развертывания всего 1 – 2 сек.

Время работы с максимальной скоростью всего лишь 8 – 10 сек.

Главным преимуществом креатинфосфатного пути образования АТФ являются:

    малое время развертывания (1-2 сек);

    высокая мощность.

Эта реакция является главным источником энергии для упражнений максимальной мощности: бег на короткие дистанции, прыжки метания, подъем штанги. Эта реакция может неоднократно включаться во время выполнения физических упражнений, что делает возможным быстрое повышение мощности выполняемой работы.

Биохимическая оценка состояния этого пути ресинтеза АТФ обычно проводится двумя показателями: креатиновому коэффициенту и алактатному долгу.

Креатиновый коэффициент – это выделение креатина в сутки. Этот показатель характеризует запасы креатинфосфата в организме.

Алактатный кислородный долг – это повышение потребления кислорода в ближайшие 4 – 5 мин, после выполнения кратковременного упражнения максимальной мощности. Этот избыток кислорода требуется для обеспечения высокой скорости тканевого дыхания сразу после окончания нагрузки для создания в мышечных клетках повышенной концентрации АТФ. У высококвалифицированных спортсменов значение алактатного долга после выполнения нагрузок максимальной мощности составляет 8 – 10 литров.

Гликолитический путь ресинтеза АТФ, так же как креатинфосфатный является анаэробным путем. Источником энергии, необходимой для ресинтеза АТФ в данном случае является мышечный гликоген. При анаэробном распаде гликогена от его молекулы под действием фермента фосфорилазы поочередно отщепляются концевые остатки глюкозы в форме глюкозо-1-фосфата. Далее молекулы глюезо-1-фосфата после ряда последовательных реакций превращаются в молочную кислоту. Этот процесс называется гликолиз. В результате гликолиза образуются промежуточные продукты, содержащие фосфатные группы, соединенные макроэргическими связями. Эта связь легко переносится на АДФ с образованием АТФ. В покое реакции гликолиза протекают медленно, но при мышечной работе его скорость может возрасти в 2000 раз, причем уже в предстартовом состоянии.

Максимальная мощность – 750-850 кал/мин-кг, что в два раза выше, чем при тканевом дыхании. Такая высокая мощность объясняется содержанием в клетках большого запаса гликогена и наличием механизма активизации ключевых ферментов.

Время развертывания 20-30 секунд.

Время работы с максимальной мощностью – 2-3 минуты.

Гликолитический способ образования АТФ имеет ряд преимуществ перед аэробным путем:

    он быстрее выходит на максимальную мощность;

    имеет более высокую величину максимальной мощности;

    не требует участия митохондрий и кислорода.

Однако у этого пути есть и свои недостатки :

    процесс малоэкономичен;

    накопление молочной кислоты в мышцах существенно нарушает их нормальное функционирование и способствует утомлению мышцы.

Общий итог гликолиза может быть представлен в виде следующих уравнений:

С 6 Н 12 О 6 + АДФ + 2 Н 3 РО 4 С 3 Н 6 О 3 + 2 АТФ + 2 Н 2 О;

глюкоза молочная кислота

n + 3 АДФ + 3 Н 3 РО 4 С 3 Н 6 О 3 + n _ 1 + 3 АТФ + 2 Н 2 О

гликоген молочная кислота

Схема анаэробного и аэробного гликолиза

Для оценки гликолиза используют две биохимические методики – измерение концентрации лактата в крови, измерение водородного показателя крови и определение щелочного резерва крови.

Определяют также и содержание лактата в моче. Это дает информацию о суммарном вкладе гликолиза в обеспечение энергией упражнений, выполненных за время тренировки.

Еще одним важным показателем является лактатный кислородный долг. Лактатный кислородный долг – это повышенное потребление кислорода в ближайшие 1-1,5 часа после окончания мышечной работы. Этот избыток кислорода необходим для устранения молочной кислоты, образовавшейся при выполнении мышечной работы. У хорошо тренированных спортсменов кислородный долг составляет 20-22 л. По величине лактаного долга судят о возможностях данного спортсмена при нагрузках субмаксимальной мощности.

Рубрика: "Биохимия". Анаэробные и аэробные пути ресинтеза АТФ при мышечной деятельности.
Ресинтез АТФ в процессе гликолиза, эффективность и особенности этого процесса при мышечной деятельности.
Миокиназная реакция и ее роль в поддержании постоянства концентрации АТФ в работающих мышцах.
Роль ресинтеза АТФ в процессе аэробного окисления в обеспечении энергией длительной мышечной деятельности.
Взаимосвязь между анаэробным и аэробным процессами в мышцах

В двухфазной мышечной деятельности, т.е. при чередовании актов сокращения и расслабления, происходит несколько процессов, для протекания которых необходимо расщепление АТФ. Гидролиз АТФ происходит по уравнению:

Наличие широкого круга процессов, потребляющих энергию при мышечной работе, обуславливает высокую скорость ее расходования. Запасы АТФ в мышечном волокне составляют 0,4 – 0,5 % от веса мышцы, их хватает на 0,5 – 1 сек. работы с субмаксимальной интенсивностью.
Мышечные волокна нормально работают только при содержании АТФ , колеблющемся в небольшом диапазоне. Накопление больших количсеств АТФ, чем 0,5 % (от веса мышцы) в мышце не происходит, так как возникает субстратное угнетение миозиновой АТФ-азы, препятствующее образованию связей между нитями актина и миозина, ведущее к утрачиванию сократительной способности мышцы. При концентрации АТФ 0,15-0,2 % от веса мышцы наблюдается затруднение в работе «кальциевого насоса», и становится невозможным разрыв между актином и миозином. Все вышесказанное предъявляет высокие требования к процессам, обеспечивающим восполнение (ресинтез) запасов АТФ.
При повышении работоспособности под влиянием физической тренировки происходит не только увеличение скорости расщепления АТФ при работе, но и совершенствование процессов, в которых АТФ ресинтезируется.

Ресинтез АТФ при мышечной работе можно выразить суммарным уравнением:

Фосфорилирование АДФ неорганическим фосфатом в физиологических условиях требует затрат энергии в количестве около 10 ккал/моль. Нужное количество энергии освобождается в процессах двух типов: аэробных, происходящих с участием кислорода, и анаэробных, осуществляющих ресинтез АТФ без участия кислорода. Прежде чем переходить к характеристике различных путей ресинтеза АТФ, следует остановиться на показателях, позволяющих сравнивать, оценивать их достоинства и недостатки. К таким показателям относятся максимальная мощность процесса, скорость его развертывания, метаболическая емкость и эффективность.
Под максимальной мощностью понимается наибольшая скорость освобождения энергии, используемой для ресинтеза АТФ, в том или ином процессе (наибольшее количество АТФ, ресинтезируемое в единицу времени).
Скорость развертывания оценивается временем от начала работы до момента достижения процессом максимальной мощности.
Метаболическая емкость – общее количество энергии, которое может быть освобождено в процессе распада вещества до исчерпания возможностей его мобилизации (общее количество ресинтезируемой АТФ).
Эффективность процесса – характеризуется отношением количества энергии, затраченной на выполнение механической работы, к общему количеству освободившейся энергии. Различают термодинамическую, метаболическую и механическую эффективность.
Термодинамическая эффективность - оценивается той долей энергии АТФ, которая преобразуется в механическую работу. В механическую работу преобразуется 40-49 % (0,4%) энергии, освобождающейся при расщеплении АТФ.
Метаболическая эффективность показывает, какая часть освободившейся в ходе химических превращений энергии фиксируется в макроэргических фосфатных связях АТФ. В частности, для аэробного окисления углеводов максимальная метаболическая эффективность составляет около 60%.
Механическая эффективность – количественно характеризует способность организма использовать энергию химических связей различных энергетических источников для обеспечения мышечной работы. Она рассчитывается как произведение термодинамической эффективности и метаболической.
Аэробный процесс – основной механизм ресинтеза АТФ, практически полностью обеспечивающий в обычных условиях энергетические потребности организма. Он характеризуется высокой эффективностью, большой метаболической емкостью, широким кругом субстратов окисления (субстратами аэробного окисления могут быть углеводы, липиды, продукты белкового обмена), отсутствием накопления в организме токсических продуктов обмена. Однако, многостадийность этого процесса, сложный путь транспорта кислорода к работающим органам и ограниченные возможности систем, обеспечивающих этот транспорт, ограничивают аэробный процесс по максимальной мощности. Наряду с этим, аэробный процесс имеет низкую скорость развертывания. У нетренированных лиц процесс аэробного ресинтеза АТФ достигает своей максимальной мощности только через 3-4 минуты после начала напряженной мышечной работы. Наибольшая скорость ресинтеза АТФ в аэробном процессе у лиц с высокой степенью тренированности, выполняющих разминку, достигается только к концу первой минуты интенсивной мышечной работы. Учитывая, что многие спортивные упражнения имеют продолжительность меньшую, чем нужно для полного включения аэробного процесса, даже такую скорость развертывания можно рассматривать как недостаточно высокую. Другая особенность аэробного процесса заключается в том, что и при максимальной мощности в единицу времени в нем образуется меньше АТФ, чем расходуется за это же время при интенсивной физической работе. При наличии только аэробного механизма энергообеспечения организма не обладал бы способностью быстро переходить от состояния покоя к напряженной работе, быстро повышать мощность по ходу упражнения, выполнять кратковременные интенсивные упражнения скоростно-силового характера.
Анаэробные процессы , включающие меньшее число химических реакций, чем аэробные, и не зависящие от поставки кислорода, превосходят аэробные процессы по скорости развертывания и характеризуются более высокой максимальной мощностью. Однако, их метаболическая емкость, зависящая от запасов креатинфосфата и гликогена, а также от устойчивости организма к воздействию продуктов анаэробного обмена значительно уступает аэробному процессу по метаболической емкости. Можно выделить три основных анаэробных процесса: креатинфосфокиназную реакцию, гликолиз и миокиназную реакцию . Во всех трех процессах ресинтез АТФ происходит путем взаимодействия АДФ с макроэргическими соединениями либо присутствующими в мышцах (АДФ и креатинфосфат), либо образующимися в процессе анаэробных окислительных превращений углеводов (дифосфоглицериновая и фосфопировиноградная кислоты). Следует рассмотреть локализацию этих энергопоставляющих процессов в мышечном волокне и их взаимоотношение при мышечной деятельности. Потребление АТФ миофибриллами в саркоплазме приводит к образованию АДФ, которая тут же в саркоплазме (на миофибриллах), регенирируется в АТФ в ходе креатинкиназной реакции. Креатинфосфат (КФ) отдает свою фосфатную группу и превращается в креатин.
Гликолиз также происходит в саркоплазме. Субстратом для него является глюкоза, которая образуется из мышечного гликогена или приносится в мышцу кровью. В процессе гликолиза ресинтезируется АТФ, а конечный продукт – молочная кислота - покидает мышцу, диффундируя в кровь. Аэробные процессы окисления локализованы в митохондриях, туда поступает кислород и субстраты окисления – образовавшаяся в процессе гликолиза пировиноградная кислота (ПВК) и жирные кислоты. ПВК и жирные кислоты окисляются, и в форме ацетил КоА вступают в цикл Кребса.
Следует указать на важную роль КФ в энергетике сердечной и скелетной мышц. КФ является связующим звеном между процессами, идущими с освобождением энергии (окислительное фосфорилирование, гликолиз), и процессами, ее потребляющими, он является переносчиком макроэргических фосфатных групп из митохондрий в саркоплазму - к миофибриллам. Мембраны митохондрий непроницаемы для АТФ, но проницаемы для КФ. Как только КФ отдает свою фосфатную группу АДФ, креатин проникает в митохондрии и получает от образовавшейся там АТФ фосфатную группу.
Далее КФ из митохондрий движется в саркоплазму и снова вступает в реакцию с АДФ, восстанавливая АТФ. Механизм этот зависит от соотношения АТФ/АДФ в саркоплазме. Чем больше расход АТФ и увеличение содержания АДФ, тем интенсивнее он работает.
При выполнении любой мышечной деятельности действуют все механизмы ресинтеза АТФ, хотя вклад каждого из них в ее энергетическое обеспечение зависит от мощности и продолжительности упражнения.
Существует определенная последовательность включения и преобладания различных путей ресинтеза АТФ по мере продолжения мышечной деятельности: первые 2 – 3 с. расщепляется только АТФ, затем от 3 до 20 с. ее ресинтез происходит в основном за счет креатинфосфата, через 30 – 40 с. работы с максимальной интенсивностью основная доля энергии вырабатывается за счет анаэробного гликолиза, дальнейшее увеличение продолжительности работы повышает значимость в энергообеспечении аэробного механизма.

Ресинтез АТФ – это метаболический процесс, перманентно про-ис-хо-дя-щий в ор-га-низ-ме . Почему? Потому что АТФ является уни-вер-саль-ным источником энергии для всех клеток организма . Рас-шиф-ро-вы-ва-ет-ся аббревиатура АТФ, как аде-но-зин-три-фос-фор-ная кислота. И именно она обеспечивает работу мозга, сердца, мышц и все-го остального . Со-от-вет-ст-вен-но, раз она является источником энергии, её за-па-сы мо-гут истощаться. В зависимости от ин-тен-сив-нос-ти истощения, ресинтез АТФ мо-гут обес-пе-чи-вать фос-фо-ри-ли-ро-ва-ние, гликолиз или окисление . Каждый способ ха-рак-те-ри-зу-ет эф-фек-тив-ность и дли-тель-ность процесса. Наиболее эффективно фос-фо-ри-ли-ро-ва-ние, а дольше всего син-те-зи-ро-вать АТФ может окисление .

Зачем вообще Вам знать, как осуществляется ресинтез АТФ? Затем, что это позволит Вам более адекватно составлять себе тренировочный план , подбирать со-от-вет-ст-вую-щее спортивное питание, тре-ни-ро-вать-ся в наиболее оптимальном объё-ме и лиш-ний раз убедиться в не-об-хо-ди-мос-ти кардио тренировок . Например, имен-но вви-ду сис-те-мы ресинтеза АТФ длительность силовой тренировки не должна пре-вы-шать 60 ми-нут . Просто потому, что на-кап-ли-ва-ет-ся избыток лактата, что при-во-дит к ре-син-те-зу АТФ за счёт окисления три-гли-це-ри-дов, а не углеводов. С другой сто-ро-ны, ес-ли есть не-об-хо-ди-мость похудеть и, сле-до-ва-тель-но, мо-би-ли-зо-вать жир-ные кис-ло-ты, то наи-бо-лее эф-фек-тив-но проводить тре-ни-ро-воч-ные сессии дольше 90 минут. Вот да-вай-те и раз-бе-рём-ся, что, как и почему надо делать!

Системы ресинтеза АТФ

Фосфорилирование – это три типа реакций, основной из которых является процесс ре-син-те-за АТФ при участии креатина . Всего процесс фос-фо-ри-ли-ро-ва-ние длится око-ло 10–15 се-кунд, но первые 5–6 секунд АТФ вос-ста-нав-ли-ва-ет-ся ис-клю-чи-тель-но этой сис-те-мой . Пос-ле этого подключается гликолиз, и именно поэтому существует такая су-щест-вен-ная раз-ни-ца между силовыми показателями на раз и силовыми показателями на 2–3 пов-то-ре-ния. Ре-син-тез креатина занимает около 5–15 минут, причём за первые 1,5 ми-ну-ты вос-ста-нав-ли-ва-ет-ся примерно 65%, за последующие 4,5 минуты 85% и уже по-том ос-тав-шие-ся 15% . Имен-но поэтому во время силовых циклов существует не-об-хо-ди-мость в дол-гом от-ды-хе между подходами и низком количестве повторений.

Гликолиз – это процесс ресинтеза АТФ при участии углеводов в форме гликогена . На-чи-на-ет-ся этот процесс при нагрузках, длящихся дольше нескольких секунд . Все-го гли-ко-лиз участвует в процессе вос-ста-нов-ле-ния АТФ около 2–3 минут в за-ви-си-мос-ти от вы-нос-ли-вос-ти спортсмена . Но доля гликолиза по истечении 30 се-кунд бес-пре-рыв-ной нагрузки перманентно снижается, а в процессе гликолиза вы-ра-ба-ты-ва-ет-ся всё боль-ше пирувата, который затем ме-та-бо-ли-зи-ру-ет-ся в лактат, сти-му-ли-руя вос-па-ле-ние в мышечных волокнах . По факту уже по истечении 15 се-кунд на-чи-на-ет-ся син-те-зи-ро-вать-ся пируват, а значит, подключается система окис-ле-ния. Дли-тель-ность отдыха для вос-ста-нов-ле-ния этой системы ресинтеза АТФ на-хо-дит-ся в диа-па-зо-не 30–90 секунд . В случае, если атлет це-ле-на-прав-лен-но пы-та-ет-ся до-бить-ся ме-та-бо-ли-чес-ко-го стресса , ему может быть выгодно отдыхать 30 се-кунд, но ес-ли при-ме-ня-ет-ся объёмно-силовой тренинг , то пред-поч-ти-тель-но от-ды-хать 60–90 секунд.

Окисление – это процесс ресинтеза АТФ посредством мобилизации и дальнейшей ути-ли-за-ции жирных кислот и/или углеводов. «Топливо» может поступать из три-гли-це-ри-дов и гликогена в мышцах, липидов из подкожно-жировой клетчатки и из глю-ко-зы в кро-ви . Но в том случае, если гликогена будет не хватать для выполнения тя-жё-лой на-груз-ки, организм будет разрушать белки скелетной мускулатуры для мо-би-ли-за-ции ами-но-кис-лот, и их дальнейшей утилизации в виде источника АТФ . Имен-но по-это-му, ес-ли человек тренируется в большом количестве повторений, ему име-ет смысл уве-ли-чить количество потребляемых углеводов и/или употреблять «прос-тые» уг-ле-во-ды во время тренировки. Во время похудения может быть осмысленно при-ни-мать BCAA .

Заключение: поскольку процесс фос-фо-ри-ли-ро-ва-ния осу-щест-вля-ет-ся пре-иму-щест-вен-но при учас-тии креатина, во время силовых циклов имеет смысл при-ни-мать креа-тин в виде добавки . Оптимальным временем под нагрузкой во время объём-ных цик-лов является 30–40 секунд, потому что потом начинает активно вы-ра-ба-ты-вать-ся пируват. Чем более развиты митохондрии, тем дольше организму уда-ёт-ся эф-фек-тив-но ути-ли-зи-ро-вать продукты распада, образующиеся в процессе гли-ко-ли-за, что по-ло-жи-тель-но ска-зы-ва-ет-ся на адап-та-ци-он-ном резерве атлета и пре-дель-но эф-фек-тив-ном для него тренировочном объёме – это ещё одна причина де-лать кар-дио на мас-се.

Источники

Ncbi.nlm.nih.gov/pmc/articles/PMC2716334/

Ncbi.nlm.nih.gov/pmc/articles/PMC4898252/

Ncbi.nlm.nih.gov/pmc/articles/PMC2917728/

Ncbi.nlm.nih.gov/pmc/articles/PMC3005844/

Sciencedirect.com/science/article/pii/S1550413112005037

Ncbi.nlm.nih.gov/pubmed/8964751/

Ncbi.nlm.nih.gov/pmc/articles/PMC1157744/

Ncbi.nlm.nih.gov/pubmed/4030556/

Ncbi.nlm.nih.gov/pubmed/9950784/

Ncbi.nlm.nih.gov/pubmed/2600022/

Ncbi.nlm.nih.gov/pubmed/20847704